This commit introduces a new package `pkg/kms`.
It contains basic types and functions to interact
with various KMS implementations.
This commit also moves KMS-related code from `cmd/crypto`
to `pkg/kms`. Now, it is possible to implement a KMS-based
config data encryption in the `pkg/config` package.
This commit introduces a new package `pkg/fips`
that bundles functionality to handle and configure
cryptographic protocols in case of FIPS 140.
If it is compiled with `--tags=fips` it assumes
that a FIPS 140-2 cryptographic module is used
to implement all FIPS compliant cryptographic
primitives - like AES, SHA-256, ...
In "FIPS mode" it excludes all non-FIPS compliant
cryptographic primitives from the protocol parameters.
This commit adds a `MarshalText` implementation
to the `crypto.Context` type.
The `MarshalText` implementation replaces the
`WriteTo` and `AppendTo` implementation.
It is slightly slower than the `AppendTo` implementation
```
goos: darwin
goarch: arm64
pkg: github.com/minio/minio/cmd/crypto
BenchmarkContext_AppendTo/0-elems-8 381475698 2.892 ns/op 0 B/op 0 allocs/op
BenchmarkContext_AppendTo/1-elems-8 17945088 67.54 ns/op 0 B/op 0 allocs/op
BenchmarkContext_AppendTo/3-elems-8 5431770 221.2 ns/op 72 B/op 2 allocs/op
BenchmarkContext_AppendTo/4-elems-8 3430684 346.7 ns/op 88 B/op 2 allocs/op
```
vs.
```
BenchmarkContext/0-elems-8 135819834 8.658 ns/op 2 B/op 1 allocs/op
BenchmarkContext/1-elems-8 13326243 89.20 ns/op 128 B/op 1 allocs/op
BenchmarkContext/3-elems-8 4935301 243.1 ns/op 200 B/op 3 allocs/op
BenchmarkContext/4-elems-8 2792142 428.2 ns/op 504 B/op 4 allocs/op
goos: darwin
```
However, the `AppendTo` benchmark used a pre-allocated buffer. While
this improves its performance it does not match the actual usage of
`crypto.Context` which is passed to a `KMS` and always encoded into
a newly allocated buffer.
Therefore, this change seems acceptable since it should not impact the
actual performance but reduces the overall code for Context marshaling.
This commit disables the Hashicorp Vault
support but provides a way to temp. enable
it via the `MINIO_KMS_VAULT_DEPRECATION=off`
Vault support has been deprecated long ago
and this commit just requires users to take
action if they maintain a Vault integration.
This commit replaces the usage of
github.com/minio/sha256-simd with crypto/sha256
of the standard library in all non-performance
critical paths.
This is necessary for FIPS 140-2 compliance which
requires that all crypto. primitives are implemented
by a FIPS-validated module.
Go can use the Google FIPS module. The boringcrypto
branch of the Go standard library uses the BoringSSL
FIPS module to implement crypto. primitives like AES
or SHA256.
We only keep github.com/minio/sha256-simd when computing
the content-SHA256 of an object. Therefore, this commit
relies on a build tag `fips`.
When MinIO is compiled without the `fips` flag it will
use github.com/minio/sha256-simd. When MinIO is compiled
with the fips flag (go build --tags "fips") then MinIO
uses crypto/sha256 to compute the content-SHA256.
This commit refactors the SSE implementation and add
S3-compatible SSE-KMS context handling.
SSE-KMS differs from SSE-S3 in two main aspects:
1. The client can request a particular key and
specify a KMS context as part of the request.
2. The ETag of an SSE-KMS encrypted object is not
the MD5 sum of the object content.
This commit only focuses on the 1st aspect.
A client can send an optional SSE context when using
SSE-KMS. This context is remembered by the S3 server
such that the client does not have to specify the
context again (during multipart PUT / GET / HEAD ...).
The crypto. context also includes the bucket/object
name to prevent renaming objects at the backend.
Now, AWS S3 behaves as following:
- If the user does not provide a SSE-KMS context
it does not store one - resp. does not include
the SSE-KMS context header in the response (e.g. HEAD).
- If the user specifies a SSE-KMS context without
the bucket/object name then AWS stores the exact
context the client provided but adds the bucket/object
name internally. The response contains the KMS context
without the bucket/object name.
- If the user specifies a SSE-KMS context with
the bucket/object name then AWS again stores the exact
context provided by the client. The response contains
the KMS context with the bucket/object name.
This commit implements this behavior w.r.t. SSE-KMS.
However, as of now, no such object can be created since
the server rejects SSE-KMS encryption requests.
This commit is one stepping stone for SSE-KMS support.
Co-authored-by: Harshavardhana <harsha@minio.io>
```
mc admin config set alias/ storage_class standard=EC:3
```
should only succeed if parity ratio is valid for all
server pools, if not we should fail proactively.
This PR also needs to bring other changes now that
we need to cater for variadic drive counts per pool.
Bonus fixes also various bugs reproduced with
- GetObjectWithPartNumber()
- CopyObjectPartWithOffsets()
- CopyObjectWithMetadata()
- PutObjectPart,PutObject with truncated streams
This commit refactors the code in `cmd/crypto`
and separates SSE-S3, SSE-C and SSE-KMS.
This commit should not cause any behavior change
except for:
- `IsRequested(http.Header)`
which now returns the requested type {SSE-C, SSE-S3,
SSE-KMS} and does not consider SSE-C copy headers.
However, SSE-C copy headers alone are anyway not valid.
`decryptObjectInfo` is a significant bottleneck when listing objects.
Reduce the allocations for a significant speedup.
https://github.com/minio/sio/pull/40
```
λ benchcmp before.txt after.txt
benchmark old ns/op new ns/op delta
Benchmark_decryptObjectInfo-32 24260928 808656 -96.67%
benchmark old MB/s new MB/s speedup
Benchmark_decryptObjectInfo-32 0.04 1.24 31.00x
benchmark old allocs new allocs delta
Benchmark_decryptObjectInfo-32 75112 48996 -34.77%
benchmark old bytes new bytes delta
Benchmark_decryptObjectInfo-32 287694772 4228076 -98.53%
```
In `(*cacheObjects).GetObjectNInfo` copy the metadata before spawning a goroutine.
Clean up a few map[string]string copies as well, reducing allocs and simplifying the code.
Fixes#10426
This commit reduces the retry delay when retrying a request
to a KES server by:
- reducing the max. jitter delay from 3s to 1.5s
- skipping the random delay when there are more KES endpoints
available.
If there are more KES endpoints we can directly retry to the request
by sending it to the next endpoint - as pointed out by @krishnasrinivas
This commit addresses a maintenance / automation problem when MinIO-KES
is deployed on bare-metal. In orchestrated env. the orchestrator (K8S)
will make sure that `n` KES servers (IPs) are available via the same DNS
name. There it is sufficient to provide just one endpoint.
This commit adds a new admin API for creating master keys.
An admin client can send a POST request to:
```
/minio/admin/v3/kms/key/create?key-id=<keyID>
```
The name / ID of the new key is specified as request
query parameter `key-id=<ID>`.
Creating new master keys requires KES - it does not work with
the native Vault KMS (deprecated) nor with a static master key
(deprecated).
Further, this commit removes the `UpdateKey` method from the `KMS`
interface. This method is not needed and not used anymore.
This commit changes the data key generation such that
if a MinIO server/nodes tries to generate a new DEK
but the particular master key does not exist - then
MinIO asks KES to create a new master key and then
requests the DEK again.
From now on, a SSE-S3 master key must not be created
explicitly via: `kes key create <key-name>`.
Instead, it is sufficient to just set the env. var.
```
export MINIO_KMS_KES_KEY_NAME=<key-name>
```
However, the MinIO identity (mTLS client certificate)
must have the permission to access the `/v1/key/create/`
API. Therefore, KES policy for MinIO must look similar to:
```
[
/v1/key/create/<key-name-pattern>
/v1/key/generate/<key-name-pattern>
/v1/key/decrypt/<key-name-pattern>
]
```
However, in our guides we already suggest that.
See e.g.: https://github.com/minio/kes/wiki/MinIO-Object-Storage#kes-server-setup
***
The ability to create master keys on request may also be
necessary / useful in case of SSE-KMS.
This commit makes the KES client use HTTP/2
when establishing a connection to the KES server.
This is necessary since the next KES server release
will require HTTP/2.
In certain organizations policy claim names
can be not just 'policy' but also things like
'roles', the value of this field might also
be *string* or *[]string* support this as well
In this PR we are still not supporting multiple
policies per STS account which will require a
more comprehensive change.
Currently when connections to vault fail, client
perpetually retries this leads to assumptions that
the server has issues and masks the problem.
Re-purpose *crypto.Error* type to send appropriate
errors back to the client.
This commit removes github.com/minio/kes as
a dependency and implements the necessary
client-side functionality without relying
on the KES project.
This resolves the licensing issue since
KES is licensed under AGPL while MinIO
is licensed under Apache.
This commit adds support for the minio/kes KMS.
See: https://github.com/minio/kes
In particular you can configure it as KMS by:
- `export MINIO_KMS_KES_ENDPOINT=` // Server URL
- `export MINIO_KMS_KES_KEY_FILE=` // TLS client private key
- `export MINIO_KMS_KES_CERT_FILE=` // TLS client certificate
- `export MINIO_KMS_KES_CA_PATH=` // Root CAs issuing server cert
- `export MINIO_KMS_KES_KEY_NAME=` // The name of the (default)
master key
Final update to all messages across sub-systems
after final review, the only change here is that
NATS now has TLS and TLSSkipVerify to be consistent
for all other notification targets.
- Migrate and save only settings which are enabled
- Rename logger_http to logger_webhook and
logger_http_audit to audit_webhook
- No more pretty printing comments, comment
is a key=value pair now.
- Avoid quotes on values which do not have space in them
- `state="on"` is implicit for all SetConfigKV unless
specified explicitly as `state="off"`
- Disabled IAM users should be disabled always
This PR refactors object layer handling such
that upon failure in sub-system initialization
server reaches a stage of safe-mode operation
wherein only certain API operations are enabled
and available.
This allows for fixing many scenarios such as
- incorrect configuration in vault, etcd,
notification targets
- missing files, incomplete config migrations
unable to read encrypted content etc
- any other issues related to notification,
policies, lifecycle etc
- This PR allows config KVS to be validated properly
without being affected by ENV overrides, rejects
invalid values during set operation
- Expands unit tests and refactors the error handling
for notification targets, returns error instead of
ignoring targets for invalid KVS
- Does all the prep-work for implementing safe-mode
style operation for MinIO server, introduces a new
global variable to toggle safe mode based operations
NOTE: this PR itself doesn't provide safe mode operations
- adding oauth support to MinIO browser (#8400) by @kanagaraj
- supports multi-line get/set/del for all config fields
- add support for comments, allow toggle
- add extensive validation of config before saving
- support MinIO browser to support proper claims, using STS tokens
- env support for all config parameters, legacy envs are also
supported with all documentation now pointing to latest ENVs
- preserve accessKey/secretKey from FS mode setups
- add history support implements three APIs
- ClearHistory
- RestoreHistory
- ListHistory
- add help command support for each config parameters
- all the bug fixes after migration to KV, and other bug
fixes encountered during testing.
This commit allows the MinIO server to parse the metadata if:
- either the `X-Minio-Internal-Server-Side-Encryption-S3-Key-Id`
and the `X-Minio-Internal-Server-Side-Encryption-S3-Kms-Sealed-Key`
entries are present.
- or *both* headers are not present.
This is in service to support a K/V data key store.
This commit adds a new method `UpdateKey` to the KMS
interface.
The purpose of `UpdateKey` is to re-wrap an encrypted
data key (the key generated & encrypted with a master key by e.g.
Vault).
For example, consider Vault with a master key ID: `master-key-1`
and an encrypted data key `E(dk)` for a particular object. The
data key `dk` has been generated randomly when the object was created.
Now, the KMS operator may "rotate" the master key `master-key-1`.
However, the KMS cannot forget the "old" value of that master key
since there is still an object that requires `dk`, and therefore,
the `D(E(dk))`.
With the `UpdateKey` method call MinIO can ask the KMS to decrypt
`E(dk)` with the old key (internally) and re-encrypted `dk` with
the new master key value: `E'(dk)`.
However, this operation only works for the same master key ID.
When rotating the data key (replacing it with a new one) then
we perform a `UnsealKey` operation with the 1st master key ID
and then a `GenerateKey` operation with the 2nd master key ID.
This commit also updates the KMS documentation and removes
the `encrypt` policy entry (we don't use `encrypt`) and
add a policy entry for `rewarp`.
This commit relaxes the restriction that the MinIO gateway
does not accept SSE-KMS headers. Now, the S3 gateway allows
SSE-KMS headers for PUT and MULTIPART PUT requests and forwards them
to the S3 gateway backend (AWS). This is considered SSE pass-through
mode.
Fixes#7753
This commit adds a unit test for the vault
config verification (which covers also `IsEmpty()`).
Vault-related code is hard to test with unit tests
since a Vault service would be necessary. Therefore
this commit only adds tests for a fraction of the code.
Fixes#7409
- Current implementation was spawning renewer goroutines
without waiting for the lease duration to end. Remove vault renewer
and call vault.RenewToken directly and manage reauthentication if
lease expired.
This commit fixes a nil pointer dereference issue
that can occur when the Vault KMS returns e.g. a 404
with an empty HTTP response. The Vault client SDK
does not treat that as error and returns nil for
the error and the secret.
Further it simplifies the token renewal and
re-authentication mechanism by using a single
background go-routine.
The control-flow of Vault authentications looks
like this:
1. `authenticate()`: Initial login and start of background job
2. Background job starts a `vault.Renewer` to renew the token
3. a) If this succeeds the token gets updated
b) If this fails the background job tries to login again
4. If the login in 3b. succeeded goto 2. If it fails
goto 3b.