- write in o_dsync instead of o_direct for smaller
objects to avoid unaligned double Write() situations
that may arise for smaller objects < 128KiB
- avoid fallocate() as its not useful since we do not
use Append() semantics anymore, fallocate is not useful
for streaming I/O we can save on a syscall
- createFile() doesn't need to validate `bucket` name
with a Lstat() call since createFile() is only used
to write at `minioTmpBucket`
- use io.Copy() when writing unAligned writes to allow
usage of ReadFrom() from *os.File providing zero
buffer writes().
This refactor is done for few reasons below
- to avoid deadlocks in scenarios when number
of nodes are smaller < actual erasure stripe
count where in N participating local lockers
can lead to deadlocks across systems.
- avoids expiry routines to run 1000 of separate
network operations and routes per disk where
as each of them are still accessing one single
local entity.
- it is ideal to have since globalLockServer
per instance.
- In a 32node deployment however, each server
group is still concentrated towards the
same set of lockers that partipicate during
the write/read phase, unlike previous minio/dsync
implementation - this potentially avoids send
32 requests instead we will still send at max
requests of unique nodes participating in a
write/read phase.
- reduces overall chattiness on smaller setups.
Fixes an issue reported by @klauspost and @vadmeste
This PR also allows users to expand their clusters
from single node XL deployment to distributed mode.
Simplify the cmd/http package overall by removing
custom plain text v/s tls connection detection, by
migrating to go1.12 and choose minimum version
to be go1.12
Also remove all the vendored deps, since they
are not useful anymore.
This PR is the first set of changes to move the config
to the backend, the changes use the existing `config.json`
allows it to be migrated such that we can save it in on
backend disks.
In future releases, we will slowly migrate out of the
current architecture.
Fixes#6182
This PR implements an object layer which
combines input erasure sets of XL layers
into a unified namespace.
This object layer extends the existing
erasure coded implementation, it is assumed
in this design that providing > 16 disks is
a static configuration as well i.e if you started
the setup with 32 disks with 4 sets 8 disks per
pack then you would need to provide 4 sets always.
Some design details and restrictions:
- Objects are distributed using consistent ordering
to a unique erasure coded layer.
- Each pack has its own dsync so locks are synchronized
properly at pack (erasure layer).
- Each pack still has a maximum of 16 disks
requirement, you can start with multiple
such sets statically.
- Static sets set of disks and cannot be
changed, there is no elastic expansion allowed.
- Static sets set of disks and cannot be
changed, there is no elastic removal allowed.
- ListObjects() across sets can be noticeably
slower since List happens on all servers,
and is merged at this sets layer.
Fixes#5465Fixes#5464Fixes#5461Fixes#5460Fixes#5459Fixes#5458Fixes#5460Fixes#5488Fixes#5489Fixes#5497Fixes#5496