26 KiB
Moonfire NVR API
Status: current.
Objective
Allow a JavaScript-based web interface to list cameras and view recordings.
In the future, this is likely to be expanded:
- configuration support
- commandline tool over a UNIX-domain socket (at least for bootstrapping web authentication)
- mobile interface
Detailed design
Note: italicized terms in this document are defined in the glossary.
All requests for JSON data should be sent with the header
Accept: application/json (exactly).
POST /api/login
The request should have an application/json body containing a dict with
username and password keys.
On successful authentication, the server will return an HTTP 204 (no content)
with a Set-Cookie header for the s cookie, which is an opaque, HttpOnly
(unavailable to Javascript) session identifier.
If authentication or authorization fails, the server will return a HTTP 403
(forbidden) response. Currently the body will be a text/plain error message;
future versions will likely be more sophisticated.
POST /api/logout
The request should have an application/json body containing
a csrf parameter copied from the session.csrf of the
top-level API request.
On success, returns an HTTP 204 (no content) responses. On failure, returns a
4xx response with text/plain error message.
GET /api/
Returns basic information about the server, including all cameras. Valid request parameters:
days: a boolean indicating if the days parameter described below should be included.cameraConfigs: a boolean indicating if thecamera.configandcamera.stream[].configparameters described below should be included. This requires theread_camera_configspermission as described inschema.proto.
Example request URI (with added whitespace between parameters):
/api/?days=true
&cameraConfigs=true
The application/json response will have a dict as follows:
timeZoneName: the name of the IANA time zone the server is using to divide recordings into days as described further below.cameras: a list of cameras. Each is a dict as follows:uuid: in text formatshortName: a short name (typically one or two words)description: a longer description (typically a phrase or paragraph)config: (only included if request parametercameraConfigsis true) a dictionary describing the configuration of the camera:usernamepasswordonvif_host
streams: a dict of stream type ("main" or "sub") to a dictionary describing the stream:retainBytes: the configured total number of bytes of completed recordings to retain.minStartTime90k: the start time of the earliest recording for this camera, in 90kHz units since 1970-01-01 00:00:00 UTC.maxEndTime90k: the end time of the latest recording for this camera, in 90kHz units since 1970-01-01 00:00:00 UTC.totalDuration90k: the total duration recorded, in 90 kHz units. This is no greater thanmaxEndTime90k - maxStartTime90k; it will be lesser if there are gaps in the recorded data.totalSampleFileBytes: the total number of bytes of sample data (themdatportion of a.mp4file).fsBytes: the total number of bytes on the filesystem used by this stream. This is slightly more thantotalSampleFileBytesbecause it also includes the wasted portion of the final filesystem block allocated to each file.days: (only included if request pararameterdaysis true) dictionary representing calendar days (in the server's time zone) with non-zero total duration of recordings for that day. Currently this includes uncommitted and growing recordings. This is likely to change in a future release for #40. The keys are of the formYYYY-mm-dd; the values are objects with the following attributes:totalDuration90kis the total duration recorded during that day. If a recording spans a day boundary, some portion of it is accounted to each day.startTime90kis the start of that calendar day in the server's time zone.endTime90kis the end of that calendar day in the server's time zone. It is usually 24 hours after the start time. It might be 23 hours or 25 hours during spring forward or fall back, respectively.
config: (only included if request parametercameraConfigsis true) a dictionary describing the configuration of the stream:rtsp_url
signals: a list of all signals known to the server. Each is a dictionary with the following properties:id: an integer identifier.shortName: a unique, human-readable description of the signalcameras: a map of associated cameras' UUIDs to the type of association:directorindirect. Seedb/schema.sqlfor more description.type: a UUID, expected to match one ofsignalTypes.days: as incameras.streams.daysabove. status: unimplemented
signalTypes: a list of all known signal types.uuid: in text format.states: a map of all possible states of the enumeration to more information about them:color: a recommended color to use in UIs to represent this state, as in the HTML specification.motion: if present and true, directly associated cameras will be considered to have motion when this signal is in this state.
session: if logged in, a dict with the following properties:usernamecsrf: a cross-site request forgery token for use inPOSTrequests.
Example response:
{
"timeZoneName": "America/Los_Angeles",
"cameras": [
{
"uuid": "fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe",
"shortName": "driveway",
"description": "Hikvision DS-2CD2032 overlooking the driveway from east",
"config": {
"onvif_host": "192.168.1.100",
"user": "admin",
"password": "12345",
},
"streams": {
"main": {
"retainBytes": 536870912000,
"minStartTime90k": 130888729442361,
"maxEndTime90k": 130985466591817,
"totalDuration90k": 96736169725,
"totalSampleFileBytes": 446774393937,
"days": {
"2016-05-01": {
"endTime90k": 131595516000000,
"startTime90k": 131587740000000,
"totalDuration90k": 52617609
},
"2016-05-02": {
"endTime90k": 131603292000000,
"startTime90k": 131595516000000,
"totalDuration90k": 20946022
}
}
}
}
},
...
],
"signals": [
{
"id": 1,
"shortName": "driveway motion",
"cameras": {
"fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe": "direct"
},
"type": "ee66270f-d9c6-4819-8b33-9720d4cbca6b",
"days": {
"2016-05-01": {
"endTime90k": 131595516000000,
"startTime90k": 131587740000000,
"totalDuration90k": 5400000
}
}
}
],
"signalTypes": [
{
"uuid": "ee66270f-d9c6-4819-8b33-9720d4cbca6b",
"states": {
0: {
"name": "unknown",
"color": "#000000"
},
1: {
"name": "off",
"color": "#888888"
},
2: {
"name": "on",
"color": "#ff8888",
"motion": true
}
}
}
],
"session": {
"username": "slamb",
"csrf": "2DivvlnKUQ9JD4ao6YACBJm8XK4bFmOc"
}
}
GET /api/cameras/<uuid>/
Returns information for the camera with the given URL. As in the like section
of GET /api/ with the days parameter set and the cameraConfigs parameter
unset.
Example response:
{
"description": "",
"streams": {
"main": {
"days": {
"2016-05-01": {
"endTime90k": 131595516000000,
"startTime90k": 131587740000000,
"totalDuration90k": 52617609
},
"2016-05-02": {
"endTime90k": 131603292000000,
"startTime90k": 131595516000000,
"totalDuration90k": 20946022
}
},
"maxEndTime90k": 131598273666690,
"minStartTime90k": 131590386129355,
"retainBytes": 104857600,
"totalDuration90k": 73563631,
"totalSampleFileBytes": 98901406
}
},
"shortName": "driveway"
}
GET /api/cameras/<uuid>/<stream>/recordings
Returns information about recordings. Valid request parameters:
startTime90kand andendTime90klimit the data returned to only recordings with wall times overlapping with the given half-open interval. Either or both may be absent; they default to the beginning and end of time, respectively.split90kcauses long runs of recordings to be split at the next convenient boundary after the given duration.- TODO(slamb):
continueto support paging. (If data is too large, the server should return acontinuekey which is expected to be returned on following requests.)
Returns a JSON object. Under the key recordings is an array of recordings in
arbitrary order. Each recording object has the following properties:
startId. The id of this recording, which can be used with/view.mp4to retrieve its content.endId(optional). If absent, this object describes a single recording. If present, this indicates that recordingsstartId-endId(inclusive) together are as described. Adjacent recordings from the same RTSP session may be coalesced in this fashion to reduce the amount of redundant data transferred.firstUncommitted(optional). If this range is not fully committed to the database, the first id that is uncommitted. This is significant because it's possible that after a crash and restart, this id will refer to a completely different recording. That recording will have a differentopenId.growing(optional). If this boolean is true, the recordingendIdis still being written to. Accesses to this id (such asview.mp4) may retrieve more data than described here if not bounded by duration. Additionally, ifstartId==endId, the start time of the recording is "unanchored" and may change in subsequent accesses.openId. Each time Moonfire NVR starts in read-write mode, it is assigned an increasing "open id". This field is the open id as of when these recordings were written. This can be used to disambiguate ids referring to uncommitted recordings.startTime90k: the start time of the given recording, in the wall time scale. Note this may be less than the requestedstartTime90kif this recording was ongoing at the requested time.endTime90k: the end time of the given recording, in the wall time scale. Note this may be greater than the requestedendTime90kif this recording was ongoing at the requested time.videoSampleEntryId: a reference to an entry in thevideoSampleEntriesmap.mp4` URL.videoSamples: the number of samples (aka frames) of video in this recording.
Under the property videoSampleEntries, an object mapping ids to objects with
the following properties:
width: the stored width in pixels.height: the stored height in pixels.pixelHSpacing: the relative width of a pixel, as in a ISO/IEC 14496-12 section 12.1.4.3PixelAspectRatioBox. If absent, assumed to be 1.pixelVSpacing: the relative height of a pixel, as in a ISO/IEC 14496-12 section 12.1.4.3PixelAspectRatioBox. If absent, assumed to be 1.
The full initialization segment data for a given video sample entry can be
retrieved at the URL /api/init/<id>.mp4.
Example request URI (with added whitespace between parameters):
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/recordings
?startTime90k=130888729442361
&endTime90k=130985466591817
Example response:
{
"recordings": [
{
"startId": 1,
"startTime90k": 130985461191810,
"endTime90k": 130985466591817,
"sampleFileBytes": 8405564,
"videoSampleEntryId": "1",
},
{
"endTime90k": 130985461191810,
...
},
...
],
"videoSampleEntries": {
"1": {
"width": 1280,
"height": 720
}
},
}
GET /api/cameras/<uuid>/<stream>/view.mp4
Requires the view_video permission.
Returns a .mp4 file, with an etag and support for range requests. The MIME
type will be video/mp4, with a codecs parameter as specified in
RFC 6381.
Expected query parameters:
s(one or more): a string of the formSTART_ID[-END_ID][@OPEN_ID][.[REL_START_TIME]-[REL_END_TIME]]. This specifies segments to include. The produced.mp4file will be a concatenation of the segments indicated by allsparameters. The ids to retrieve are as returned by the/recordingsURL. The open id is optional and will be enforced if present; it's recommended for disambiguation when the requested range includes uncommitted recordings. The optional start and end times are in 90k units of wall time and relative to the start of the first specified id. These can be used to clip the returned segments. Note they can be used to skip over some ids entirely; this is allowed so that the caller doesn't need to know the start time of each interior id. If there is no key frame at the desired relative start time, frames back to the last key frame will be included in the returned data, and an edit list will instruct the viewer to skip to the desired start time.ts(optional): should be set totrueto request a subtitle track be added with human-readable recording timestamps.
Example request URI to retrieve all of recording id 1 from the given camera:
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.mp4?s=1
Example request URI to retrieve all of recording ids 1–5 from the given camera, with timestamp subtitles:
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.mp4?s=1-5&ts=true
Example request URI to retrieve recording id 1, skipping its first 26 90,000ths of a second:
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.mp4?s=1.26
Note carefully the distinction between wall duration and media duration.
It's normal for /view.mp4 to return a media presentation with a length
slightly different from the wall duration of the backing recording or
portion that was requested.
TODO: error behavior on missing segment. It should be a 404, likely with an
application/json body describing what portion if any (still) exists.
GET /api/cameras/<uuid>/<stream>/view.mp4.txt
Returns a text/plain debugging string for the .mp4 generated by the
same URL minus the .txt suffix.
GET /api/cameras/<uuid>/<stream>/view.m4s
Returns a .mp4 suitable for use as a HTML5 Media Source Extensions
media segment. The MIME type will be video/mp4, with a
codecs parameter as specified in RFC 6381. Note that these
can't include edit lists, so (unlike /view.mp4) the caller must manually
trim undesired leading portions.
This response will include the following additional headers:
X-Prev-Media-Duration: the total media duration (in 90 kHz units) of all recordings before the first requested recording in thesparameter. Browser-based callers may use this to place this at the correct position in the source buffer viaSourceBuffer.timestampOffset.X-Runs: the cumulative number of "runs" of recordings. If this recording starts a new run, it is included in the count. Browser-based callers may use this to force gaps in the source buffer timeline by adjusting the timestamp offset if desired.X-Leading-Media-Duration: if present, the total duration (in 90 kHz units) of additional leading video included before the caller's first requested timestamp. This happens when the caller's requested timestamp does not fall exactly on a key frame. Media segments can't include edit lists, so unlike with the/api/.../view.mp4endpoint the caller is responsible for trimming this portion. Browser-based callers may useSourceBuffer.appendWindowStart.
Expected query parameters:
s(one or more): as with the.mp4URL.
It's recommended that each .m4s retrieval be for at most one Moonfire NVR
recording segment. The fundamental reason is that the Media Source Extension
API appears structured for adding a complete segment at a time. Large media
segments thus impose significant latency on seeking. Additionally, because of
this fundamental reason Moonfire NVR makes no effort to make multiple-segment
.m4s requests practical:
- There is currently a hard limit of 4 GiB of data because the
.m4suses a singlemooffollowed by a singlemdat; the former references the latter with 32-bit offsets. - There's currently no way to generate an initialization segment for more
than one video sample entry, so a
.m4sthat uses more than one video sample entry can't be used. - The
X-Prev-Media-DurationandX-Leading-Media-Durationheaders only describe the first segment.
Timestamp tracks (see the ts parameter to .mp4 URIs) aren't supported
today. Most likely browser clients will implement timestamp subtitles via
WebVTT API calls anyway.
GET /api/cameras/<uuid>/<stream>/view.m4s.txt
Returns a text/plain debugging string for the .mp4 generated by the same
URL minus the .txt suffix.
GET /api/cameras/<uuid>/<stream>/live.m4s
Initiate a WebSocket stream for chunks of video. Expects the standard
WebSocket headers as described in RFC 6455 and (if authentication
is required) the s cookie.
The server will send a sequence of binary messages. Each message corresponds
to one or more frames of video. The first message is guaranteed to start with a
"key" (IDR) frame; others may not. The message will contain HTTP headers
followed by by a .mp4 media segment. The following headers will be included:
X-Recording-Id: the open id, a period, and the recording id of the recording these frames belong to.X-Recording-Start: the timestamp (in Moonfire NVR's usual 90,000ths of a second) of the start of the recording. Note that if the recording is "unanchored" (as described inGET /api/.../recordings), the recording's start time may change before it is completed.X-Prev-Media-Duration: as in/.../view.m4s.X-Runs: as in/.../view.m4s.X-Media-Time-Range: the relative media start and end times of these frames within the recording, as a half-open interval.
The WebSocket will always open immediately but will receive messages only while the backing RTSP stream is connected.
Example request URI:
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/live.m4s
Example binary message sequence:
Content-Type: video/mp4; codecs="avc1.640028"
X-Recording-Id: 42.5680
X-Recording-Start: 130985461191810
X-Prev-Media-Duration: 10000000
X-Media-Time-Range: 5220058-5400061
X-Video-Sample-Entry-Id: 4
binary mp4 data
Content-Type: video/mp4; codecs="avc1.640028"
X-Recording-Id: 42.5681
X-Recording-Start: 130985461191822
X-Prev-Media-Duration: 10180003
X-Media-Time-Range: 0-180002
X-Video-Sample-Entry-Id: 4
binary mp4 data
Content-Type: video/mp4; codecs="avc1.640028"
X-Recording-Id: 42.5681
X-Recording-Start: 130985461191822
X-Prev-Media-Duration: 10360005
X-Media-Time-Range: 180002-360004
X-Video-Sample-Entry-Id: 4
binary mp4 data
These roughly correspond to the .m4s files available at the following URLs:
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.m4s?s=5680@42.5220058-5400061/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.m4s?s=5681@42.0-180002/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.m4s?s=5681@42.180002-360004
However, there are two important differences:
- The
/view.m4sendpoint accepts offsets within a recording as wall durations; the/live.m4sendpoint'sX-Media-Time-Rangeheader returns them as media durations. Thus the URLs above are only exactly correct if the wall and media durations of the recording are identical. - The
/view.m4sendpoint always returns a time range that starts with a key frame;/live.m4smessages may not include a key frame.
Note: an earlier version of this API used a multipart/mixed segment instead,
compatible with the [multipart-stream-js][multipart-stream-js] library. The
problem with this approach is that browsers have low limits on the number of
active HTTP/1.1 connections: six in Chrome's case. The WebSocket limit is much
higher (256), allowing browser-side Javascript to stream all active camera
streams simultaneously as well as making other simultaneous HTTP requests.
GET /api/init/<id>.mp4
Returns a .mp4 suitable for use as a HTML5 Media Source Extensions
initialization segment. The MIME type will be video/mp4, with
a codecs parameter as specified in RFC 6381.
GET /api/init/<id>.mp4.txt
Returns a text/plain debugging string for the .mp4 generated by the
same URL minus the .txt suffix.
GET /api/signals
Returns an application/json response with state of every signal for the
requested timespan.
Valid request parameters:
startTime90kand andendTime90klimit the data returned to only events relevant to the given half-open interval. Either or both may be absent; they default to the beginning and end of time, respectively. This will return the current state as of the latest change (to any signal) before the start time (if any), then all changes in the interval. This allows the caller to determine the state at every moment during the selected timespan, as well as observe all events (even instantaneous ones).
Responses are several parallel arrays for each observation:
times90k: the time of each event. Events are given in ascending order.signalIds: the id of the relevant signal; expected to match one in thesignalsfield of the/api/response.states: the new state.
Example request URI (with added whitespace between parameters):
/api/signals
?startTime90k=130888729442361
&endTime90k=130985466591817
Example response:
{
"signalIds": [1, 1, 1],
"states": [1, 2, 1],
"times90k": [130888729440000, 130985424000000, 130985418600000]
}
This represents the following observations:
- time 130888729440000 was the last change before the requested start;
signal 1 (
driveway motion) was in state 1 (off). - signal 1 entered state 2 (
on) at time 130985424000000. - signal 1 entered state 1 (
off) at time 130985418600000.
POST /api/signals
Requires the update_signals permission.
Alters the state of a signal.
A typical client might be a subscriber of a camera's built-in motion
detection event stream or of a security system's zone status event stream.
It makes a request on every event or on every 30 second timeout, predicting
that the state will last for a minute. This prediction may be changed later.
Writing to the near future in this way ensures that the UI never displays
unknown when the client is actively managing the signal.
Some requests may instead backfill earlier history, such as when a video analytics client starts up and analyzes all video segments recorded since it last ran. These will specify beginning and end times.
The request should have an application/json body describing the change to
make. It should be a dict with these attributes:
signalIds: a list of signal ids to change. Must be sorted.states: a list (one persignalIdsentry) of states to set.startTime90k: (optional) The start of the observation in 90 kHz units since 1970-01-01 00:00:00 UTC; commonly taken from an earlier response. If absent, assumed to be now.endBase: ifepoch,relEndTime90kis relative to 1970-01-01 00:00:00 UTC. Ifnow, epoch is relative to the current time.relEndTime90k(optional): The end of the observation, relative to the specified base. Note this time is allowed to be in the future.
The response will be an application/json body dict with the following
attributes:
time90k: the current time. When the request'sstartTime90kis absent and/or itsendBaseisnow, this is needed to know the effect of the earlier request.
Example request sequence:
Request 1
The client responsible for reporting live driveway motion has just started. It observes motion now. It records no history and predicts there will be motion for the next minute.
Request:
{
"signalIds": [1],
"states": [2],
"endBase": "now",
"relEndTime90k": 5400000
}
Response:
{
"time90k": 140067468000000
}
Request 2
30 seconds later (half the prediction interval), the client still observes motion. It leaves the prior data alone and predicts the motion will continue.
Request:
{
"signalIds": [1],
"states": [2],
"endBase": "now",
"relEndTime90k": 5400000
}
Response:
{
"time90k": 140067470700000
}
Request 3
5 seconds later, the client observes motion has ended. It leaves the prior data alone and predicts no more motion.
Request:
{
"signalIds": [1],
"states": [2],
"endBase": "now",
"relEndTime90k": 5400000
}
}
Response:
{
"time90k": 140067471150000
}