moonfire-nvr/src/dir.rs

887 lines
35 KiB
Rust
Raw Normal View History

Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
// This file is part of Moonfire NVR, a security camera digital video recorder.
// Copyright (C) 2016 Scott Lamb <slamb@slamb.org>
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// In addition, as a special exception, the copyright holders give
// permission to link the code of portions of this program with the
// OpenSSL library under certain conditions as described in each
// individual source file, and distribute linked combinations including
// the two.
//
// You must obey the GNU General Public License in all respects for all
// of the code used other than OpenSSL. If you modify file(s) with this
// exception, you may extend this exception to your version of the
// file(s), but you are not obligated to do so. If you do not wish to do
// so, delete this exception statement from your version. If you delete
// this exception statement from all source files in the program, then
// also delete it here.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//! Sample file directory management.
//!
//! This includes opening files for serving, rotating away old files, and saving new files.
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
use db;
use error::Error;
use libc::{self, c_char};
use protobuf::{self, Message};
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
use recording;
use openssl::hash;
use schema;
use std::cmp;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
use std::ffi;
use std::fs;
use std::io::{self, Read, Write};
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
use std::mem;
use std::os::unix::io::FromRawFd;
use std::sync::{Arc, Mutex};
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
use std::sync::mpsc;
use std::thread;
use uuid::Uuid;
/// A sample file directory. Typically one per physical disk drive.
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
///
/// If the directory is used for writing, the `start_syncer` function should be called to start
/// a background thread. This thread manages deleting files and writing new files. It synces the
/// directory and commits these operations to the database in the correct order to maintain the
/// invariants described in `design/schema.md`.
#[derive(Debug)]
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
pub struct SampleFileDir {
/// The open file descriptor for the directory. The worker uses it to create files and sync the
/// directory. Other threads use it to open sample files for reading during video serving.
fd: Fd,
// Lock order: don't acquire mutable.lock() while holding db.lock().
mutable: Mutex<SharedMutableState>,
}
/// A file descriptor associated with a directory (not necessarily the sample file dir).
#[derive(Debug)]
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
pub struct Fd(libc::c_int);
impl Drop for Fd {
fn drop(&mut self) {
if unsafe { libc::close(self.0) } < 0 {
let e = io::Error::last_os_error();
warn!("Unable to close sample file dir: {}", e);
}
}
}
impl Fd {
/// Opens the given path as a directory.
pub fn open(path: &str, mkdir: bool) -> Result<Fd, io::Error> {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
let cstring = ffi::CString::new(path)
.map_err(|e| io::Error::new(io::ErrorKind::InvalidInput, e))?;
if mkdir && unsafe { libc::mkdir(cstring.as_ptr(), 0o700) } != 0 {
let e = io::Error::last_os_error();
if e.kind() != io::ErrorKind::AlreadyExists {
return Err(e.into());
}
}
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
let fd = unsafe { libc::open(cstring.as_ptr(), libc::O_DIRECTORY | libc::O_RDONLY, 0) };
if fd < 0 {
return Err(io::Error::last_os_error().into());
}
Ok(Fd(fd))
}
/// Opens a sample file within this directory with the given flags and (if creating) mode.
unsafe fn openat(&self, p: *const c_char, flags: libc::c_int, mode: libc::c_int)
-> Result<fs::File, io::Error> {
let fd = libc::openat(self.0, p, flags, mode);
if fd < 0 {
return Err(io::Error::last_os_error())
}
Ok(fs::File::from_raw_fd(fd))
}
unsafe fn renameat(&self, from: *const c_char, to: *const c_char) -> Result<(), io::Error> {
let result = libc::renameat(self.0, from, self.0, to);
if result < 0 {
return Err(io::Error::last_os_error())
}
Ok(())
}
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
/// Locks the directory with the specified `flock` operation.
pub fn lock(&self, operation: libc::c_int) -> Result<(), io::Error> {
let ret = unsafe { libc::flock(self.0, operation) };
if ret < 0 {
return Err(io::Error::last_os_error().into());
}
Ok(())
}
pub fn statfs(&self) -> Result<libc::statvfs, io::Error> {
unsafe {
let mut stat: libc::statvfs = mem::zeroed();
if libc::fstatvfs(self.0, &mut stat) < 0 {
return Err(io::Error::last_os_error())
}
Ok(stat)
}
}
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
impl SampleFileDir {
/// Opens the directory using the given metadata.
///
/// `db_meta.in_progress_open` should be filled if the directory should be opened in read/write
/// mode; absent in read-only mode.
pub fn open(path: &str, db_meta: &schema::DirMeta)
-> Result<Arc<SampleFileDir>, Error> {
let read_write = db_meta.in_progress_open.is_some();
let s = SampleFileDir::open_self(path, false)?;
s.fd.lock(if read_write { libc::LOCK_EX } else { libc::LOCK_SH } | libc::LOCK_NB)?;
let dir_meta = s.read_meta()?;
if !SampleFileDir::consistent(db_meta, &dir_meta) {
return Err(Error::new(format!("metadata mismatch. db: {:?} dir: {:?}",
db_meta, &dir_meta)));
}
if db_meta.in_progress_open.is_some() {
s.write_meta(db_meta)?;
}
Ok(s)
}
/// Returns true if the existing directory and database metadata are consistent; the directory
/// is then openable.
fn consistent(db_meta: &schema::DirMeta, dir_meta: &schema::DirMeta) -> bool {
if dir_meta.db_uuid != db_meta.db_uuid { return false; }
if dir_meta.dir_uuid != db_meta.dir_uuid { return false; }
if db_meta.last_complete_open.is_some() &&
(db_meta.last_complete_open != dir_meta.last_complete_open &&
db_meta.last_complete_open != dir_meta.in_progress_open) {
return false;
}
if db_meta.last_complete_open.is_none() && dir_meta.last_complete_open.is_some() {
return false;
}
true
}
pub fn create(path: &str, db_meta: &schema::DirMeta) -> Result<Arc<SampleFileDir>, Error> {
let s = SampleFileDir::open_self(path, true)?;
s.fd.lock(libc::LOCK_EX | libc::LOCK_NB)?;
let old_meta = s.read_meta()?;
// Verify metadata. We only care that it hasn't been completely opened.
// Partial opening by this or another database is fine; we won't overwrite anything.
// TODO: consider one exception: if the version 2 upgrade fails at the post_tx step.
if old_meta.last_complete_open.is_some() {
return Err(Error::new(format!("Can't create dir at path {}: is already in use:\n{:?}",
path, old_meta)));
}
s.write_meta(db_meta)?;
Ok(s)
}
fn open_self(path: &str, create: bool) -> Result<Arc<SampleFileDir>, Error> {
let fd = Fd::open(path, create)
.map_err(|e| Error::new(format!("unable to open sample file dir {}: {}", path, e)))?;
Ok(Arc::new(SampleFileDir {
fd,
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
mutable: Mutex::new(SharedMutableState{
next_uuid: None,
}),
}))
}
/// Opens the given sample file for reading.
pub fn open_sample_file(&self, uuid: Uuid) -> Result<fs::File, io::Error> {
let p = SampleFileDir::get_rel_pathname(uuid);
unsafe { self.fd.openat(p.as_ptr(), libc::O_RDONLY, 0) }
}
/// Reads the directory metadata. If none is found, returns an empty proto.
fn read_meta(&self) -> Result<schema::DirMeta, Error> {
let mut meta = schema::DirMeta::default();
let p = unsafe { ffi::CStr::from_ptr("meta\0".as_ptr() as *const c_char) };
let mut f = match unsafe { self.fd.openat(p.as_ptr(), libc::O_RDONLY, 0) } {
Err(e) => {
if e.kind() == ::std::io::ErrorKind::NotFound {
return Ok(meta);
}
return Err(e.into());
},
Ok(f) => f,
};
let mut data = Vec::new();
f.read_to_end(&mut data)?;
let mut s = protobuf::CodedInputStream::from_bytes(&data);
meta.merge_from(&mut s).map_err(|e| Error {
description: format!("Unable to parse proto: {:?}", e),
cause: Some(Box::new(e)),
})?;
Ok(meta)
}
// TODO: this should be exposed only to the db layer.
pub fn write_meta(&self, meta: &schema::DirMeta) -> Result<(), Error> {
let (tmp_path, final_path) = unsafe {
(ffi::CStr::from_ptr("meta.tmp\0".as_ptr() as *const c_char),
ffi::CStr::from_ptr("meta\0".as_ptr() as *const c_char))
};
let mut f = unsafe { self.fd.openat(tmp_path.as_ptr(),
libc::O_CREAT | libc::O_TRUNC | libc::O_WRONLY,
0o600)? };
meta.write_to_writer(&mut f).map_err(|e| Error {
description: format!("Unable to write metadata proto: {:?}", e),
cause: Some(Box::new(e)),
})?;
f.sync_all()?;
unsafe { self.fd.renameat(tmp_path.as_ptr(), final_path.as_ptr())? };
self.sync()?;
Ok(())
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
/// Creates a new writer.
/// Note this doesn't wait for previous rotation to complete; it's assumed the sample file
/// directory has sufficient space for a couple recordings per camera in addition to the
/// cameras' total `retain_bytes`.
///
2016-12-29 15:33:34 -05:00
/// The new recording will continue from `prev` if specified; this should be as returned from
/// a previous `close` call.
pub fn create_writer<'a>(&self, db: &db::Database, channel: &'a SyncerChannel,
prev: Option<PreviousWriter>, camera_id: i32,
video_sample_entry_id: i32)
2016-12-29 15:33:34 -05:00
-> Result<Writer<'a>, Error> {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
// Grab the next uuid. Typically one is cached—a sync has usually completed since the last
// writer was created, and syncs ensure `next_uuid` is filled while performing their
// transaction. But if not, perform an extra database transaction to reserve a new one.
let uuid = match self.mutable.lock().unwrap().next_uuid.take() {
Some(u) => u,
None => {
info!("Committing extra transaction because there's no cached uuid");
let mut l = db.lock();
let mut tx = l.tx()?;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
let u = tx.reserve_sample_file()?;
tx.commit()?;
u
},
};
let p = SampleFileDir::get_rel_pathname(uuid);
let f = match unsafe { self.fd.openat(p.as_ptr(),
libc::O_WRONLY | libc::O_EXCL | libc::O_CREAT,
0o600) } {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
Ok(f) => f,
Err(e) => {
self.mutable.lock().unwrap().next_uuid = Some(uuid);
return Err(e.into());
},
};
2016-12-29 15:33:34 -05:00
Writer::open(f, uuid, prev, camera_id, video_sample_entry_id, channel)
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
pub fn statfs(&self) -> Result<libc::statvfs, io::Error> { self.fd.statfs() }
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
/// Gets a pathname for a sample file suitable for passing to open or unlink.
fn get_rel_pathname(uuid: Uuid) -> [libc::c_char; 37] {
let mut buf = [0u8; 37];
write!(&mut buf[..36], "{}", uuid.hyphenated()).expect("can't format uuid to pathname buf");
// libc::c_char seems to be i8 on some platforms (Linux/arm) and u8 on others (Linux/amd64).
unsafe { mem::transmute::<[u8; 37], [libc::c_char; 37]>(buf) }
}
/// Unlinks the given sample file within this directory.
fn unlink(fd: &Fd, uuid: Uuid) -> Result<(), io::Error> {
let p = SampleFileDir::get_rel_pathname(uuid);
let res = unsafe { libc::unlinkat(fd.0, p.as_ptr(), 0) };
if res < 0 {
return Err(io::Error::last_os_error())
}
Ok(())
}
/// Syncs the directory itself.
fn sync(&self) -> Result<(), io::Error> {
let res = unsafe { libc::fsync(self.fd.0) };
if res < 0 {
return Err(io::Error::last_os_error())
};
Ok(())
}
}
/// State shared between users of the `SampleFileDirectory` struct and the syncer.
#[derive(Debug)]
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
struct SharedMutableState {
next_uuid: Option<Uuid>,
}
/// A command sent to the syncer. These correspond to methods in the `SyncerChannel` struct.
enum SyncerCommand {
AsyncSaveRecording(db::RecordingToInsert, fs::File),
AsyncAbandonRecording(Uuid),
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
#[cfg(test)]
Flush(mpsc::SyncSender<()>),
}
/// A channel which can be used to send commands to the syncer.
/// Can be cloned to allow multiple threads to send commands.
#[derive(Clone)]
pub struct SyncerChannel(mpsc::Sender<SyncerCommand>);
/// State of the worker thread.
struct Syncer {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
dir: Arc<SampleFileDir>,
db: Arc<db::Database>,
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
to_unlink: Vec<Uuid>,
to_mark_deleted: Vec<Uuid>,
}
/// Starts a syncer for the given sample file directory.
///
/// The lock must not be held on `db` when this is called.
///
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
/// There should be only one syncer per directory, or 0 if operating in read-only mode.
/// This function will perform the initial rotation synchronously, so that it is finished before
/// file writing starts. Afterward the syncing happens in a background thread.
///
/// Returns a `SyncerChannel` which can be used to send commands (and can be cloned freely) and
/// a `JoinHandle` for the syncer thread. At program shutdown, all `SyncerChannel` clones should be
/// removed and then the handle joined to allow all recordings to be persisted.
pub fn start_syncer(dir: Arc<SampleFileDir>, db: Arc<db::Database>)
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
-> Result<(SyncerChannel, thread::JoinHandle<()>), Error> {
let to_unlink = db.lock().list_reserved_sample_files()?;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
let (snd, rcv) = mpsc::channel();
let mut syncer = Syncer {
dir,
db,
to_unlink,
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
to_mark_deleted: Vec::new(),
};
syncer.initial_rotation()?;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
Ok((SyncerChannel(snd),
thread::Builder::new().name("syncer".into()).spawn(move || syncer.run(rcv)).unwrap()))
}
pub struct NewLimit {
pub stream_id: i32,
pub limit: i64,
}
/// Deletes recordings if necessary to fit within the given new `retain_bytes` limit.
/// Note this doesn't change the limit in the database; it only deletes files.
/// Pass a limit of 0 to delete all recordings associated with a camera.
pub fn lower_retention(dir: Arc<SampleFileDir>, db: Arc<db::Database>, limits: &[NewLimit])
-> Result<(), Error> {
let to_unlink = db.lock().list_reserved_sample_files()?;
let mut syncer = Syncer {
dir,
db,
to_unlink,
to_mark_deleted: Vec::new(),
};
syncer.do_rotation(|db| {
let mut to_delete = Vec::new();
for l in limits {
let before = to_delete.len();
let stream = db.streams_by_id().get(&l.stream_id)
.ok_or_else(|| Error::new(format!("no such stream {}", l.stream_id)))?;
if l.limit >= stream.sample_file_bytes { continue }
get_rows_to_delete(db, l.stream_id, stream, stream.retain_bytes - l.limit,
&mut to_delete)?;
info!("stream {}, {}->{}, deleting {} rows", stream.id,
stream.sample_file_bytes, l.limit, to_delete.len() - before);
}
Ok(to_delete)
})
}
/// Gets rows to delete to bring a stream's disk usage within bounds.
fn get_rows_to_delete(db: &db::LockedDatabase, stream_id: i32,
stream: &db::Stream, extra_bytes_needed: i64,
to_delete: &mut Vec<db::ListOldestSampleFilesRow>) -> Result<(), Error> {
let bytes_needed = stream.sample_file_bytes + extra_bytes_needed - stream.retain_bytes;
let mut bytes_to_delete = 0;
if bytes_needed <= 0 {
debug!("{}: have remaining quota of {}", stream.id, -bytes_needed);
return Ok(());
}
let mut n = 0;
db.list_oldest_sample_files(stream_id, |row| {
bytes_to_delete += row.sample_file_bytes as i64;
to_delete.push(row);
n += 1;
bytes_needed > bytes_to_delete // continue as long as more deletions are needed.
})?;
if bytes_needed > bytes_to_delete {
return Err(Error::new(format!("{}: couldn't find enough files to delete: {} left.",
stream.id, bytes_needed)));
}
info!("{}: deleting {} bytes in {} recordings ({} bytes needed)",
stream.id, bytes_to_delete, n, bytes_needed);
Ok(())
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
impl SyncerChannel {
/// Asynchronously syncs the given writer, closes it, records it into the database, and
/// starts rotation.
fn async_save_recording(&self, recording: db::RecordingToInsert, f: fs::File) {
self.0.send(SyncerCommand::AsyncSaveRecording(recording, f)).unwrap();
}
fn async_abandon_recording(&self, uuid: Uuid) {
self.0.send(SyncerCommand::AsyncAbandonRecording(uuid)).unwrap();
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
/// For testing: flushes the syncer, waiting for all currently-queued commands to complete.
#[cfg(test)]
pub fn flush(&self) {
let (snd, rcv) = mpsc::sync_channel(0);
self.0.send(SyncerCommand::Flush(snd)).unwrap();
rcv.recv().unwrap_err(); // syncer should just drop the channel, closing it.
}
}
impl Syncer {
fn run(&mut self, cmds: mpsc::Receiver<SyncerCommand>) {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
loop {
match cmds.recv() {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
Err(_) => return, // all senders have closed the channel; shutdown
Ok(SyncerCommand::AsyncSaveRecording(recording, f)) => self.save(recording, f),
Ok(SyncerCommand::AsyncAbandonRecording(uuid)) => self.abandon(uuid),
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
#[cfg(test)]
Ok(SyncerCommand::Flush(_)) => {}, // just drop the supplied sender, closing it.
};
}
}
/// Rotates files for all streams and deletes stale reserved uuids from previous runs.
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
fn initial_rotation(&mut self) -> Result<(), Error> {
self.do_rotation(|db| {
let mut to_delete = Vec::new();
for (stream_id, stream) in db.streams_by_id() {
get_rows_to_delete(&db, *stream_id, stream, 0, &mut to_delete)?;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
Ok(to_delete)
})
}
fn do_rotation<F>(&mut self, get_rows_to_delete: F) -> Result<(), Error>
where F: FnOnce(&db::LockedDatabase) -> Result<Vec<db::ListOldestSampleFilesRow>, Error> {
let to_delete = {
let mut db = self.db.lock();
let to_delete = get_rows_to_delete(&*db)?;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
let mut tx = db.tx()?;
tx.delete_recordings(&to_delete)?;
tx.commit()?;
to_delete
};
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
for row in to_delete {
self.to_unlink.push(row.uuid);
}
self.try_unlink();
if !self.to_unlink.is_empty() {
return Err(Error::new(format!("failed to unlink {} sample files",
self.to_unlink.len())));
}
self.dir.sync()?;
{
let mut db = self.db.lock();
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
let mut tx = db.tx()?;
tx.mark_sample_files_deleted(&self.to_mark_deleted)?;
tx.commit()?;
}
self.to_mark_deleted.clear();
Ok(())
}
/// Saves the given recording and causes rotation to happen.
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
/// Note that part of rotation is deferred for the next cycle (saved writing or program startup)
/// so that there can be only one dir sync and database transaction per save.
fn save(&mut self, recording: db::RecordingToInsert, f: fs::File) {
if let Err(e) = self.save_helper(&recording, f) {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
error!("camera {}: will discard recording {} due to error while saving: {}",
recording.stream_id, recording.sample_file_uuid, e);
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
self.to_unlink.push(recording.sample_file_uuid);
return;
}
}
fn abandon(&mut self, uuid: Uuid) {
self.to_unlink.push(uuid);
self.try_unlink();
}
/// Internal helper for `save`. This is separated out so that the question-mark operator
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
/// can be used in the many error paths.
fn save_helper(&mut self, recording: &db::RecordingToInsert, f: fs::File)
-> Result<(), Error> {
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
self.try_unlink();
if !self.to_unlink.is_empty() {
return Err(Error::new(format!("failed to unlink {} files.", self.to_unlink.len())));
}
f.sync_all()?;
self.dir.sync()?;
let mut to_delete = Vec::new();
let mut l = self.dir.mutable.lock().unwrap();
let mut db = self.db.lock();
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
let mut new_next_uuid = l.next_uuid;
{
let stream =
db.streams_by_id().get(&recording.stream_id)
.ok_or_else(|| Error::new(format!("no such stream {}", recording.stream_id)))?;
get_rows_to_delete(&db, recording.stream_id, stream,
recording.sample_file_bytes as i64, &mut to_delete)?;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
let mut tx = db.tx()?;
tx.mark_sample_files_deleted(&self.to_mark_deleted)?;
tx.delete_recordings(&to_delete)?;
if new_next_uuid.is_none() {
new_next_uuid = Some(tx.reserve_sample_file()?);
}
tx.insert_recording(recording)?;
tx.commit()?;
l.next_uuid = new_next_uuid;
self.to_mark_deleted.clear();
self.to_unlink.extend(to_delete.iter().map(|row| row.uuid));
Ok(())
}
/// Tries to unlink all the uuids in `self.to_unlink`. Any which can't be unlinked will
/// be retained in the vec.
fn try_unlink(&mut self) {
let to_mark_deleted = &mut self.to_mark_deleted;
let fd = &self.dir.fd;
self.to_unlink.retain(|uuid| {
if let Err(e) = SampleFileDir::unlink(fd, *uuid) {
if e.kind() == io::ErrorKind::NotFound {
warn!("dir: Sample file {} already deleted!", uuid.hyphenated());
to_mark_deleted.push(*uuid);
false
} else {
warn!("dir: Unable to unlink {}: {}", uuid.hyphenated(), e);
true
}
} else {
to_mark_deleted.push(*uuid);
false
}
});
}
}
/// Single-use struct to write a single recording to disk and commit its metadata to the database.
/// Use `SampleFileDir::create_writer` to create a new writer. `Writer` hands off its state to the
/// syncer when done. It either saves the recording to the database (if I/O errors do not prevent
/// this) or marks it as abandoned so that the syncer will attempt to unlink the file.
pub struct Writer<'a>(Option<InnerWriter<'a>>);
/// The state associated with a `Writer`. The indirection is for the `Drop` trait; `close` moves
/// `f` and `index.video_index` out of the `InnerWriter`, which is not allowed on a struct with
/// a `Drop` trait. To avoid this problem, the real state is surrounded by an `Option`. The
/// `Option` should none only after close is called, and thus never in a way visible to callers.
struct InnerWriter<'a> {
syncer_channel: &'a SyncerChannel,
f: fs::File,
index: recording::SampleIndexEncoder,
uuid: Uuid,
corrupt: bool,
hasher: hash::Hasher,
/// The end time of the previous segment in this run, if any.
prev_end: Option<recording::Time>,
/// The start time of this segment, based solely on examining the local clock after frames in
2016-12-30 22:35:50 -05:00
/// this segment were received. Frames can suffer from various kinds of delay (initial
/// buffering, encoding, and network transmission), so this time is set to far in the future on
/// construction, given a real value on the first packet, and decreased as less-delayed packets
/// are discovered. See design/time.md for details.
local_start: recording::Time,
adjuster: ClockAdjuster,
stream_id: i32,
video_sample_entry_id: i32,
run_offset: i32,
/// A sample which has been written to disk but not added to `index`. Index writes are one
/// sample behind disk writes because the duration of a sample is the difference between its
/// pts and the next sample's pts. A sample is flushed when the next sample is written, when
/// the writer is closed cleanly (the caller supplies the next pts), or when the writer is
/// closed uncleanly (with a zero duration, which the `.mp4` format allows only at the end).
unflushed_sample: Option<UnflushedSample>,
}
/// Adjusts durations given by the camera to correct its clock frequency error.
#[derive(Copy, Clone, Debug)]
struct ClockAdjuster {
/// Every `every_minus_1 + 1` units, add `-ndir`.
/// Note i32::max_value() disables adjustment.
every_minus_1: i32,
/// Should be 1 or -1 (unless disabled).
ndir: i32,
/// Keeps accumulated difference from previous values.
cur: i32,
}
impl ClockAdjuster {
fn new(local_time_delta: Option<i64>) -> Self {
2016-12-30 22:44:41 -05:00
// Pick an adjustment rate to correct local_time_delta over the next minute (the
// desired duration of a single recording). Cap the rate at 500 ppm (which corrects
// 2,700/90,000ths of a second over a minute) to prevent noticeably speeding up or slowing
// down playback.
let (every_minus_1, ndir) = match local_time_delta {
Some(d) if d <= -2700 => (1999, 1),
Some(d) if d >= 2700 => (1999, -1),
Some(d) if d < -60 => ((60 * 90000) / -(d as i32) - 1, 1),
Some(d) if d > 60 => ((60 * 90000) / (d as i32) - 1, -1),
_ => (i32::max_value(), 0),
};
ClockAdjuster{
every_minus_1,
ndir,
cur: 0,
}
}
fn adjust(&mut self, mut val: i32) -> i32 {
self.cur += val;
// The "val > self.ndir" here is so that if decreasing durations (ndir == 1), we don't
// cause a duration of 1 to become a duration of 0. It has no effect when increasing
// durations. (There's no danger of a duration of 0 becoming a duration of 1; cur wouldn't
// be newly > self.every_minus_1.)
while self.cur > self.every_minus_1 && val > self.ndir {
val -= self.ndir;
self.cur -= self.every_minus_1 + 1;
}
val
}
}
struct UnflushedSample {
local_time: recording::Time,
pts_90k: i64,
len: i32,
is_key: bool,
}
2016-12-29 15:33:34 -05:00
#[derive(Copy, Clone)]
pub struct PreviousWriter {
end_time: recording::Time,
local_time_delta: recording::Duration,
2016-12-29 15:33:34 -05:00
run_offset: i32,
}
impl<'a> Writer<'a> {
/// Opens the writer; for use by `SampleFileDir` (which should supply `f`).
fn open(f: fs::File, uuid: Uuid, prev: Option<PreviousWriter>, stream_id: i32,
2016-12-29 15:33:34 -05:00
video_sample_entry_id: i32, syncer_channel: &'a SyncerChannel) -> Result<Self, Error> {
Ok(Writer(Some(InnerWriter{
syncer_channel,
f,
index: recording::SampleIndexEncoder::new(),
uuid,
corrupt: false,
hasher: hash::Hasher::new(hash::MessageDigest::sha1())?,
2016-12-29 15:33:34 -05:00
prev_end: prev.map(|p| p.end_time),
2016-12-30 22:35:50 -05:00
local_start: recording::Time(i64::max_value()),
adjuster: ClockAdjuster::new(prev.map(|p| p.local_time_delta.0)),
stream_id,
video_sample_entry_id,
run_offset: prev.map(|p| p.run_offset + 1).unwrap_or(0),
unflushed_sample: None,
})))
}
/// Writes a new frame to this segment.
/// `local_time` should be the local clock's time as of when this packet was received.
pub fn write(&mut self, pkt: &[u8], local_time: recording::Time, pts_90k: i64,
is_key: bool) -> Result<(), Error> {
let w = self.0.as_mut().unwrap();
if let Some(unflushed) = w.unflushed_sample.take() {
let duration = (pts_90k - unflushed.pts_90k) as i32;
if duration <= 0 {
return Err(Error::new(format!("pts not monotonically increasing; got {} then {}",
unflushed.pts_90k, pts_90k)));
}
let duration = w.adjuster.adjust(duration);
w.index.add_sample(duration, unflushed.len, unflushed.is_key);
2016-12-30 22:35:50 -05:00
w.extend_local_start(unflushed.local_time);
}
let mut remaining = pkt;
while !remaining.is_empty() {
let written = match w.f.write(remaining) {
Ok(b) => b,
Err(e) => {
if remaining.len() < pkt.len() {
// Partially written packet. Truncate if possible.
if let Err(e2) = w.f.set_len(w.index.sample_file_bytes as u64) {
error!("After write to {} failed with {}, truncate failed with {}; \
sample file is corrupt.", w.uuid.hyphenated(), e, e2);
w.corrupt = true;
}
}
return Err(Error::from(e));
},
};
remaining = &remaining[written..];
}
w.unflushed_sample = Some(UnflushedSample{
local_time: local_time,
pts_90k: pts_90k,
len: pkt.len() as i32,
is_key: is_key});
w.hasher.update(pkt)?;
Ok(())
}
/// Cleanly closes the writer, using a supplied pts of the next sample for the last sample's
/// duration (if known). If `close` is not called, the `Drop` trait impl will close the trait,
/// swallowing errors and using a zero duration for the last sample.
2016-12-29 15:33:34 -05:00
pub fn close(mut self, next_pts: Option<i64>) -> Result<PreviousWriter, Error> {
self.0.take().unwrap().close(next_pts)
}
}
impl<'a> InnerWriter<'a> {
2016-12-30 22:35:50 -05:00
fn extend_local_start(&mut self, pkt_local_time: recording::Time) {
let new = pkt_local_time - recording::Duration(self.index.total_duration_90k as i64);
2016-12-30 22:35:50 -05:00
self.local_start = cmp::min(self.local_start, new);
}
2016-12-29 15:33:34 -05:00
fn close(mut self, next_pts: Option<i64>) -> Result<PreviousWriter, Error> {
if self.corrupt {
self.syncer_channel.async_abandon_recording(self.uuid);
return Err(Error::new(format!("recording {} is corrupt", self.uuid)));
}
let unflushed =
self.unflushed_sample.take().ok_or_else(|| Error::new("no packets!".to_owned()))?;
let duration = self.adjuster.adjust(match next_pts {
None => 0,
Some(p) => (p - unflushed.pts_90k) as i32,
});
self.index.add_sample(duration, unflushed.len, unflushed.is_key);
2016-12-30 22:35:50 -05:00
self.extend_local_start(unflushed.local_time);
let mut sha1_bytes = [0u8; 20];
2018-01-31 01:05:39 -05:00
sha1_bytes.copy_from_slice(&self.hasher.finish()?[..]);
2016-12-30 22:35:50 -05:00
let start = self.prev_end.unwrap_or(self.local_start);
let end = start + recording::Duration(self.index.total_duration_90k as i64);
let flags = if self.index.has_trailing_zero() { db::RecordingFlags::TrailingZero as i32 }
else { 0 };
2016-12-30 22:35:50 -05:00
let local_start_delta = self.local_start - start;
let recording = db::RecordingToInsert{
stream_id: self.stream_id,
sample_file_bytes: self.index.sample_file_bytes,
time: start .. end,
local_time_delta: local_start_delta,
video_samples: self.index.video_samples,
video_sync_samples: self.index.video_sync_samples,
video_sample_entry_id: self.video_sample_entry_id,
sample_file_uuid: self.uuid,
video_index: self.index.video_index,
sample_file_sha1: sha1_bytes,
run_offset: self.run_offset,
flags: flags,
};
self.syncer_channel.async_save_recording(recording, self.f);
2016-12-29 15:33:34 -05:00
Ok(PreviousWriter{
end_time: end,
local_time_delta: local_start_delta,
2016-12-29 15:33:34 -05:00
run_offset: self.run_offset,
})
}
}
impl<'a> Drop for Writer<'a> {
fn drop(&mut self) {
if let Some(w) = self.0.take() {
// Swallow any error. The caller should only drop the Writer without calling close()
// if there's already been an error. The caller should report that. No point in
// complaining again.
let _ = w.close(None);
}
}
}
#[cfg(test)]
mod tests {
use super::ClockAdjuster;
use testutil;
#[test]
fn adjust() {
testutil::init();
// no-ops.
for v in &[None, Some(0), Some(-10), Some(10)] {
let mut a = ClockAdjuster::new(*v);
for _ in 0..1800 {
assert_eq!(3000, a.adjust(3000), "v={:?}", *v);
}
}
// typical, 100 ppm adjustment.
let mut a = ClockAdjuster::new(Some(-540));
let mut total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 2999 || new == 3000);
total += new;
}
let expected = 1800*3000 - 540;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
a = ClockAdjuster::new(Some(540));
let mut total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 3000 || new == 3001);
total += new;
}
let expected = 1800*3000 + 540;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
// capped at 500 ppm (change of 2,700/90,000ths over 1 minute).
a = ClockAdjuster::new(Some(-1_000_000));
total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 2998 || new == 2999, "new={}", new);
total += new;
}
let expected = 1800*3000 - 2700;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
a = ClockAdjuster::new(Some(1_000_000));
total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 3001 || new == 3002, "new={}", new);
total += new;
}
let expected = 1800*3000 + 2700;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
}
}