minio/docs/bucket/replication/DESIGN.md
2021-05-22 10:52:47 -07:00

8.0 KiB

Bucket Replication Design slack Docker Pulls

This document explains the design approach of server side bucket replication. If you're looking to get started with replication, we suggest you go through the Bucket replication guide first.

Overview

Replication relies on immutability provided by versioning to sync objects between the configured source and replication target.

Replication of object version and metadata

If an object meets replication rules as set in the replication configuration, X-Amz-Replication-Status is first set to PENDING as the PUT operation completes and replication is queued (unless synchronous replication is in place). After replication is performed, the metadata on the source object version changes to COMPLETED or FAILED depending on whether replication succeeded. The object version on the target shows X-Amz-Replication-Status of REPLICA

All replication failures are picked up by the scanner which runs at a one minute frequency, each time scanning upto a sixteenth of the namespace. Object versions marked PENDING or FAILED are re-queued for replication.

Replication speed depends on the cluster load, number of objects in the object store as well as storage speed. In addition, any bandwidth limits set via mc admin bucket remote add could also contribute to replication speed. The number of workers used for replication defaults to 100. Based on network bandwidth and system load, the number of workers used in replication can be configured using mc admin config set alias api to set the replication_workers. The prometheus metrics exposed by MinIO can be used to plan resource allocation and bandwidth management to optimize replication speed.

If synchronous replication is configured above, replication is attempted right away prior to returning the PUT object response. In the event that the replication target is down, the X-Amz-Replication-Status is marked as FAILED and resynced with target when the scanner runs again.

Any metadata changes on the source object version, such as metadata updates via PutObjectTagging, PutObjectRetention, PutObjectLegalHold and COPY api are replicated in a similar manner to target version, with the X-Amz-Replication-Status again cycling through the same states.

The description above details one way replication from source to target w.r.t incoming object uploads and metadata changes to source object version. If active-active replication is configured, any incoming uploads and metadata changes to versions created on the target, will sync back to the source and be marked as REPLICA on the source. AWS, as well as MinIO do not by default sync metadata changes on a object version marked REPLICA back to source. This requires a setting in the replication configuration called replica modification sync.

For active-active replication, automatic failover occurs on GET/HEAD operations if object or object version requested qualifies for replication and is missing on one site, but present on the other. This allows the applications to take full advantage of two-way replication even before the two sites get fully synced.

Replication of DeleteMarker and versioned Delete

MinIO allows DeleteMarker replication and versioned delete replication by setting --replicate delete,delete-marker while setting up replication configuration using mc replicate add. The MinIO implementation is based on V2 configuration, however it has been extended to allow both DeleteMarker replication and replication of versioned deletes with the DeleteMarkerReplication and DeleteReplication fields in the replication configuration. By default, this is set to Disabled unless the user specifies it while adding a replication rule.

Similar to object version replication, DeleteMarker replication also cycles through PENDING to COMPLETED or FAILED states for the X-Amz-Replication-Status on the source when a delete marker is set (i.e. performing mc rm on an object without specifying a version).After replication syncs the delete marker on the target, the DeleteMarker on the target shows X-Amz-Replication-Status of REPLICA. The status of DeleteMarker replication is returned by X-Minio-Replication-DeleteMarker-Status header on HEAD/GET calls for the delete marker version in question - i.e with mc stat --version-id dm-version-id

It must be noted that if active-active replication is set up with delete marker replication, there is potential for duplicate delete markers to be created if both source and target concurrently set a Delete Marker or if one/both of the clusters went down at tandem before the replication event was synced.This is an unavoidable side-effect in active-active replication caused by allowing delete markers set on a object version with REPLICA status back to source.

In the case of versioned deletes a.k.a permanent delete of a version by doing a mc rm --version-id on a object, replication implementation marks a object version permanently deleted as PENDING purge and deletes the version from source after syncing to the target and ensuring target version is deleted. The delete marker being deleted or object version being deleted will still be visible on listing with mc ls --versions until the sync is completed. Objects marked as deleted will not be accessible via GET or HEAD requests and would return a http response code of 405. The status of versioned delete replication on the source can be queried by HEAD request on the delete marker versionID or object versionID in question. An additional header X-Minio-Replication-Delete-Status is returned which would show PENDING or FAILED status if the replication is still not caught up.

Note that synchronous replication, i.e. when remote target is configured with --sync mode in mc admin bucket remote add does not apply to DELETE operations. The version being deleted on the source cluster needs to maintain state and ensure that the operation is mirrored to the target cluster prior to completing on the source object version. Since this needs to account for the target cluster availability and the need to serialize concurrent DELETE operations on different versions of the same object during multi DELETE operations, the current implementation queues the DELETE operations in both sync and async modes.

Existing object replication, replica modification sync for 2-way replication and multi site replication are currently not supported.

Internal metadata for replication

xl.meta that is in use for versioning has additional metadata for replication of objects,delete markers and versioned deletes.

Metadata for object replication

...
    "MetaSys": {},
        "MetaUsr": {
          "X-Amz-Replication-Status": "COMPLETED",
          "content-type": "application/octet-stream",
          "etag": "8315e643ed6a5d7c9962fc0a8ef9c11f"
        },
        "PartASizes": [
          26
        ],
...

Additional replication metadata for DeleteMarker

{
      "DelObj": {
        "ID": "8+jguy20TOuzUCN2PTrESA==",
        "MTime": 1613601949645331516,
        "MetaSys": {
          "X-Amz-Replication-Status": "Q09NUExFVEVE"
        }
      },
      "Type": 2
    }

Additional replication metadata for versioned delete

{
      "DelObj": {
        "ID": "8+jguy20TOuzUCN2PTrESA==",
        "MTime": 1613601949645331516,
        "MetaSys": {
          "purgestatus": "RkFJTEVE"
        }
      },
      "Type": 2
    }

Explore Further