also re-use storage disks for all `mc admin server info`
calls as well, implement a new LocalStorageInfo() API
call at ObjectLayer to lookup local disks storageInfo
also fixes bugs where there were double calls to StorageInfo()
most of the delete calls today spend time in
a blocking operation where multiple calls need
to be recursively sent to delete the objects,
instead we can use rename operation to atomically
move the objects from the namespace to `tmp/.trash`
we can schedule deletion of objects at this
location once in 15, 30mins and we can also add
wait times between each delete operation.
this allows us to make delete's faster as well
less chattier on the drives, each server runs locally
a groutine which would clean this up regularly.
This commit removes the `GetObject` method
from the `ObjectLayer` interface.
The `GetObject` method is not longer used by
the HTTP handlers implementing the high-level
S3 semantics. Instead, they use the `GetObjectNInfo`
method which returns both, an object handle as well
as the object metadata.
Therefore, it is no longer necessary that a concrete
`ObjectLayer` implements `GetObject`.
store the cache in-memory instead of disks to avoid large
write amplifications for list heavy workloads, store in
memory instead and let it auto expire.
server startup code expects the object layer to properly
convert error into a proper type, so that in situations when
servers are coming up and quorum is not available servers
wait on each other.
If the periodic `case <-t.C:` save gets held up for a long time it will end up
synchronize all disk writes for saving the caches.
We add jitter to per set writes so they don't sync up and don't hold a
lock for the write, since it isn't needed anyway.
If an outage prevents writes for a long while we also add individual
waits for each disk in case there was a queue.
Furthermore limit the number of buffers kept to 2GiB, since this could get
huge in large clusters. This will not act as a hard limit but should be enough
for normal operation.
This change moves away from a unified constructor for plaintext and encrypted
usage. NewPutObjReader is simplified for the plain-text reader use. For
encrypted reader use, WithEncryption should be called on an initialized PutObjReader.
Plaintext:
func NewPutObjReader(rawReader *hash.Reader) *PutObjReader
The hash.Reader is used to provide payload size and md5sum to the downstream
consumers. This is different from the previous version in that there is no need
to pass nil values for unused parameters.
Encrypted:
func WithEncryption(encReader *hash.Reader,
key *crypto.ObjectKey) (*PutObjReader, error)
This method sets up encrypted reader along with the key to seal the md5sum
produced by the plain-text reader (already setup when NewPutObjReader was
called).
Usage:
```
pReader := NewPutObjReader(rawReader)
// ... other object handler code goes here
// Prepare the encrypted hashed reader
pReader, err = pReader.WithEncryption(encReader, objEncKey)
```
- lock maintenance loop was incorrectly sleeping
as well as using ticker badly, leading to
extra expiration routines getting triggered
that could flood the network.
- multipart upload cleanup should be based on
timer instead of ticker, to ensure that long
running jobs don't get triggered twice.
- make sure to get right lockers for object name
currently we had a restriction where older setups would
need to follow previous style of "stripe" count being same
expansion, we can relax that instead newer pools can be
expanded for older setups with newer constraints of
common parity ratio.
For objects with `N` prefix depth, this PR reduces `N` such network
operations by converting `CheckFile` into a single bulk operation.
Reduction in chattiness here would allow disks to be utilized more
cleanly, while maintaining the same functionality along with one
extra volume check stat() call is removed.
Update tests to test multiple sets scenario
parentDirIsObject is not using set level understanding
to check for parent objects, without this it can lead to
objects that can actually reside on a separate set as
objects and would conflict.
Current implementation requires server pools to have
same erasure stripe sizes, to facilitate same SLA
and expectations.
This PR allows server pools to be variadic, i.e they
do not have to be same erasure stripe sizes - instead
they should have SLA for parity ratio.
If the parity ratio cannot be guaranteed by the new
server pool, the deployment is rejected i.e server
pool expansion is not allowed.
issue was introduced in #11106 the following
pattern
<-t.C // timer fired
if !t.Stop() {
<-t.C // timer hangs
}
Seems to hang at the last `t.C` line, this
issue happens because a fired timer cannot be
Stopped() anymore and t.Stop() returns `false`
leading to confusing state of usage.
Refactor the code such that use timers appropriately
with exact requirements in place.
crawler should only ListBuckets once not for each serverPool,
buckets are same across all pools, across sets and ListBuckets
always returns an unified view, once list buckets returns
sort it by create time to scan the latest buckets earlier
with the assumption that latest buckets would have lesser
content than older buckets allowing them to be scanned faster
and also to be able to provide more closer to latest view.
With new refactor of bucket healing, healing bucket happens
automatically including its metadata, there is no need to
redundant heal buckets also in ListBucketsHeal remove
it.
optimization mainly to avoid listing the entire
`.minio.sys/buckets/.minio.sys` directory, this
can get really huge and comes in the way of startup
routines, contents inside `.minio.sys/buckets/.minio.sys`
are rather transient and not necessary to be healed.
This refactor is done for few reasons below
- to avoid deadlocks in scenarios when number
of nodes are smaller < actual erasure stripe
count where in N participating local lockers
can lead to deadlocks across systems.
- avoids expiry routines to run 1000 of separate
network operations and routes per disk where
as each of them are still accessing one single
local entity.
- it is ideal to have since globalLockServer
per instance.
- In a 32node deployment however, each server
group is still concentrated towards the
same set of lockers that partipicate during
the write/read phase, unlike previous minio/dsync
implementation - this potentially avoids send
32 requests instead we will still send at max
requests of unique nodes participating in a
write/read phase.
- reduces overall chattiness on smaller setups.
Similar to #10775 for fewer memory allocations, since we use
getOnlineDisks() extensively for listing we should optimize it
further.
Additionally, remove all unused walkers from the storage layer
Bonus fixes, we do not need reload format anymore
as the replaced drive is healed locally we only need
to ensure that drive heal reloads the drive properly.
We preserve the UUID of the original order, this means
that the replacement in `format.json` doesn't mean that
the drive needs to be reloaded into memory anymore.
fixes#10791
only newly replaced drives get the new `format.json`,
this avoids disks reloading their in-memory reference
format, ensures that drives are online without
reloading the in-memory reference format.
keeping reference format in-tact means UUIDs
never change once they are formatted.
reference format should be source of truth
for inconsistent drives which reconnect,
add them back to their original position
remove automatic fix for existing offline
disk uuids
Bonus fixes
- logging improvements to ensure that we don't use
`go logger.LogIf` to avoid runtime.Caller missing
the function name. log where necessary.
- remove unused code at erasure sets
connect disks pre-emptively upon startup, to ensure we have
enough disks are connected at startup rather than wait
for them.
we need to do this to avoid long wait times for server to
be online when we have servers come up in rolling upgrade
fashion
This PR fixes a hang which occurs quite commonly at higher concurrency
by allowing following changes
- allowing lower connections in time_wait allows faster socket open's
- lower idle connection timeout to ensure that we let kernel
reclaim the time_wait connections quickly
- increase somaxconn to 4096 instead of 2048 to allow larger tcp
syn backlogs.
fixes#10413
- select lockers which are non-local and online to have
affinity towards remote servers for lock contention
- optimize lock retry interval to avoid sending too many
messages during lock contention, reduces average CPU
usage as well
- if bucket is not set, when deleteObject fails make sure
setPutObjHeaders() honors lifecycle only if bucket name
is set.
- fix top locks to list out always the oldest lockers always,
avoid getting bogged down into map's unordered nature.
add a hint on the disk to allow for tracking fresh disk
being healed, to allow for restartable heals, and also
use this as a way to track and remove disks.
There are more pending changes where we should move
all the disk formatting logic to backend drives, this
PR doesn't deal with this refactor instead makes it
easier to track healing in the future.
- Add owner information for expiry, locking, unlocking a resource
- TopLocks returns now locks in quorum by default, provides
a way to capture stale locks as well with `?stale=true`
- Simplify the quorum handling for locks to avoid from storage
class, because there were challenges to make it consistent
across all situations.
- And other tiny simplifications to reset locks.