This PR adds a WebSocket grid feature that allows servers to communicate via
a single two-way connection.
There are two request types:
* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
roundtrips with small payloads.
* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
which allows for different combinations of full two-way streams with an initial payload.
Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.
Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.
If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte
slices or use a higher-level generics abstraction.
There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.
The request path can be changed to a new one for any protocol changes.
First, all servers create a "Manager." The manager must know its address
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.
```
func (m *Manager) Connection(host string) *Connection
```
All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight
requests and responses must also be given for streaming requests.
The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.
* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
performs a single request and returns the result. Any deadline provided on the request is
forwarded to the server, and canceling the context will make the function return at once.
* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
will initiate a remote call and send the initial payload.
```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
// Responses from the remote server.
// Channel will be closed after an error or when the remote closes.
// All responses *must* be read by the caller until either an error is returned or the channel is closed.
// Canceling the context will cause the context cancellation error to be returned.
Responses <-chan Response
// Requests sent to the server.
// If the handler is defined with 0 incoming capacity this will be nil.
// Channel *must* be closed to signal the end of the stream.
// If the request context is canceled, the stream will no longer process requests.
Requests chan<- []byte
}
type Response struct {
Msg []byte
Err error
}
```
There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
smaller setups may have less drives per server choosing
the concurrency based on number of local drives, and let
the MinIO server change the overall concurrency as
necessary.
Main motivation is move towards a common backend format
for all different types of modes in MinIO, allowing for
a simpler code and predictable behavior across all features.
This PR also brings features such as versioning, replication,
transitioning to single drive setups.
this helps in caching the resolved values early on, avoids
causing further resolution for individual nodes when
object layer comes online.
this can speed up our startup time during, upgrades etc by
an order of magnitude.
additional changes in connectLoadInitFormats() and parallelize
all calls that might be potentially blocking.
```
λ mc admin decommission start alias/ http://minio{1...2}/data{1...4}
```
```
λ mc admin decommission status alias/
┌─────┬─────────────────────────────────┬──────────────────────────────────┬────────┐
│ ID │ Pools │ Capacity │ Status │
│ 1st │ http://minio{1...2}/data{1...4} │ 439 GiB (used) / 561 GiB (total) │ Active │
│ 2nd │ http://minio{3...4}/data{1...4} │ 329 GiB (used) / 421 GiB (total) │ Active │
└─────┴─────────────────────────────────┴──────────────────────────────────┴────────┘
```
```
λ mc admin decommission status alias/ http://minio{1...2}/data{1...4}
Progress: ===================> [1GiB/sec] [15%] [4TiB/50TiB]
Time Remaining: 4 hours (started 3 hours ago)
```
```
λ mc admin decommission status alias/ http://minio{1...2}/data{1...4}
ERROR: This pool is not scheduled for decommissioning currently.
```
```
λ mc admin decommission cancel alias/
┌─────┬─────────────────────────────────┬──────────────────────────────────┬──────────┐
│ ID │ Pools │ Capacity │ Status │
│ 1st │ http://minio{1...2}/data{1...4} │ 439 GiB (used) / 561 GiB (total) │ Draining │
└─────┴─────────────────────────────────┴──────────────────────────────────┴──────────┘
```
> NOTE: Canceled decommission will not make the pool active again, since we might have
> Potentially partial duplicate content on the other pools, to avoid this scenario be
> very sure to start decommissioning as a planned activity.
```
λ mc admin decommission cancel alias/ http://minio{1...2}/data{1...4}
┌─────┬─────────────────────────────────┬──────────────────────────────────┬────────────────────┐
│ ID │ Pools │ Capacity │ Status │
│ 1st │ http://minio{1...2}/data{1...4} │ 439 GiB (used) / 561 GiB (total) │ Draining(Canceled) │
└─────┴─────────────────────────────────┴──────────────────────────────────┴────────────────────┘
```
- remove some duplicated code
- reported a bug, separately fixed in #13664
- using strings.ReplaceAll() when needed
- using filepath.ToSlash() use when needed
- remove all non-Go style comments from the codebase
Co-authored-by: Aditya Manthramurthy <donatello@users.noreply.github.com>
- combine similar looking functionalities into single
handlers, and remove unnecessary proxying of the
requests at handler layer.
- remove bucket forwarding handler as part of default setup
add it only if bucket federation is enabled.
Improvements observed for 1kiB object reads.
```
-------------------
Operation: GET
Operations: 4538555 -> 4595804
* Average: +1.26% (+0.2 MiB/s) throughput, +1.26% (+190.2) obj/s
* Fastest: +4.67% (+0.7 MiB/s) throughput, +4.67% (+739.8) obj/s
* 50% Median: +1.15% (+0.2 MiB/s) throughput, +1.15% (+173.9) obj/s
```
when TLS is configured using IPs directly
might interfere and not work properly when
the server is configured with TLS certs but
the certs only have domain certs.
Also additionally allow users to specify
a public accessible URL for console to talk
to MinIO i.e `MINIO_SERVER_URL` this would
allow them to use an external ingress domain
to talk to MinIO. This internally fixes few
problems such as presigned URL generation on
the console UI etc.
This needs to be done additionally for any
MinIO deployments that might have a much more
stricter requirement when running in standalone
mode such as FS or standalone erasure code.
It makes sense that a node that has multiple disks starts when one
disk fails, returning an i/o error for example. This commit will make this
faulty tolerance available in this specific use case.
This is to ensure that there are no projects
that try to import `minio/minio/pkg` into
their own repo. Any such common packages should
go to `https://github.com/minio/pkg`
With this change, MinIO's ILM supports transitioning objects to a remote tier.
This change includes support for Azure Blob Storage, AWS S3 compatible object
storage incl. MinIO and Google Cloud Storage as remote tier storage backends.
Some new additions include:
- Admin APIs remote tier configuration management
- Simple journal to track remote objects to be 'collected'
This is used by object API handlers which 'mutate' object versions by
overwriting/replacing content (Put/CopyObject) or removing the version
itself (e.g DeleteObjectVersion).
- Rework of previous ILM transition to fit the new model
In the new model, a storage class (a.k.a remote tier) is defined by the
'remote' object storage type (one of s3, azure, GCS), bucket name and a
prefix.
* Fixed bugs, review comments, and more unit-tests
- Leverage inline small object feature
- Migrate legacy objects to the latest object format before transitioning
- Fix restore to particular version if specified
- Extend SharedDataDirCount to handle transitioned and restored objects
- Restore-object should accept version-id for version-suspended bucket (#12091)
- Check if remote tier creds have sufficient permissions
- Bonus minor fixes to existing error messages
Co-authored-by: Poorna Krishnamoorthy <poorna@minio.io>
Co-authored-by: Krishna Srinivas <krishna@minio.io>
Signed-off-by: Harshavardhana <harsha@minio.io>
The local node name is heavily used in tracing, create a new global
variable to store it. Multiple goroutines can access it since it won't be
changed later.
additionally also configure http2 healthcheck
values to quickly detect unstable connections
and let them timeout.
also use single transport for proxying requests
This refactor is done for few reasons below
- to avoid deadlocks in scenarios when number
of nodes are smaller < actual erasure stripe
count where in N participating local lockers
can lead to deadlocks across systems.
- avoids expiry routines to run 1000 of separate
network operations and routes per disk where
as each of them are still accessing one single
local entity.
- it is ideal to have since globalLockServer
per instance.
- In a 32node deployment however, each server
group is still concentrated towards the
same set of lockers that partipicate during
the write/read phase, unlike previous minio/dsync
implementation - this potentially avoids send
32 requests instead we will still send at max
requests of unique nodes participating in a
write/read phase.
- reduces overall chattiness on smaller setups.
when server is booting up there is a possibility
that users might see '503' because object layer
when not initialized, then the request is proxied
to neighboring peers first one which is online.
Design: https://gist.github.com/klauspost/025c09b48ed4a1293c917cecfabdf21c
Gist of improvements:
* Cross-server caching and listing will use the same data across servers and requests.
* Lists can be arbitrarily resumed at a constant speed.
* Metadata for all files scanned is stored for streaming retrieval.
* The existing bloom filters controlled by the crawler is used for validating caches.
* Concurrent requests for the same data (or parts of it) will not spawn additional walkers.
* Listing a subdirectory of an existing recursive cache will use the cache.
* All listing operations are fully streamable so the number of objects in a bucket no
longer dictates the amount of memory.
* Listings can be handled by any server within the cluster.
* Caches are cleaned up when out of date or superseded by a more recent one.
This PR fixes a hang which occurs quite commonly at higher concurrency
by allowing following changes
- allowing lower connections in time_wait allows faster socket open's
- lower idle connection timeout to ensure that we let kernel
reclaim the time_wait connections quickly
- increase somaxconn to 4096 instead of 2048 to allow larger tcp
syn backlogs.
fixes#10413
- select lockers which are non-local and online to have
affinity towards remote servers for lock contention
- optimize lock retry interval to avoid sending too many
messages during lock contention, reduces average CPU
usage as well
- if bucket is not set, when deleteObject fails make sure
setPutObjHeaders() honors lifecycle only if bucket name
is set.
- fix top locks to list out always the oldest lockers always,
avoid getting bogged down into map's unordered nature.
MaxConnsPerHost can potentially hang a call without any
way to timeout, we do not need this setting for our proxy
and gateway implementations instead IdleConn settings are
good enough.
Also ensure to use NewRequestWithContext and make sure to
take the disks offline only for network errors.
Fixes#10304
inconsistent drive healing when one of the drive is offline
while a new drive was replaced, this change is to ensure
that we can add the offline drive back into the mix by
healing it again.
We can reduce this further in the future, but this is a good
value to keep around. With the advent of continuous healing,
we can be assured that namespace will eventually be
consistent so we are okay to avoid the necessity to
a list across all drives on all sets.
Bonus Pop()'s in parallel seem to have the potential to
wait too on large drive setups and cause more slowness
instead of gaining any performance remove it for now.
Also, implement load balanced reply for local disks,
ensuring that local disks have an affinity for
- cleanupStaleMultipartUploads()