parentDirIsObject is not using set level understanding
to check for parent objects, without this it can lead to
objects that can actually reside on a separate set as
objects and would conflict.
Current implementation requires server pools to have
same erasure stripe sizes, to facilitate same SLA
and expectations.
This PR allows server pools to be variadic, i.e they
do not have to be same erasure stripe sizes - instead
they should have SLA for parity ratio.
If the parity ratio cannot be guaranteed by the new
server pool, the deployment is rejected i.e server
pool expansion is not allowed.
Synchronous replication can be enabled by setting the --sync
flag while adding a remote replication target.
This PR also adds proxying on GET/HEAD to another node in a
active-active replication setup in the event of a 404 on the current node.
This PR refactors the way we use buffers for O_DIRECT and
to re-use those buffers for messagepack reader writer.
After some extensive benchmarking found that not all objects
have this benefit, and only objects smaller than 64KiB see
this benefit overall.
Benefits are seen from almost all objects from
1KiB - 32KiB
Beyond this no objects see benefit with bulk call approach
as the latency of bytes sent over the wire v/s streaming
content directly from disk negate each other with no
remarkable benefits.
All other optimizations include reuse of msgp.Reader,
msgp.Writer using sync.Pool's for all internode calls.
The only purpose of check-dir flag in
ReadVersion is to return 404 when
an object has xl.meta but without data.
This is causing an extract call to the disk
which can be penalizing in case of busy system
where disks receive many concurrent access.
Optimizations include
- do not write the metacache block if the size of the
block is '0' and it is the first block - where listing
is attempted for a transient prefix, this helps to
avoid creating lots of empty metacache entries for
`minioMetaBucket`
- avoid the entire initialization sequence of cacheCh
, metacacheBlockWriter if we are simply going to skip
them when discardResults is set to true.
- No need to hold write locks while writing metacache
blocks - each block is unique, per bucket, per prefix
and also is written by a single node.
Additional cases handled
- fix address situations where healing is not
triggered on failed writes and deletes.
- consider object exists during listing when
metadata can be successfully decoded.
X-Minio-Replication-Delete-Status header shows the
status of the replication of a permanent delete of a version.
All GETs are disallowed and return 405 on this object version.
In the case of replicating delete markers.
X-Minio-Replication-DeleteMarker-Status shows the status
of replication, and would similarly return 405.
Additionally, this PR adds reporting of delete marker event completion
and updates documentation
This PR adds transition support for ILM
to transition data to another MinIO target
represented by a storage class ARN. Subsequent
GET or HEAD for that object will be streamed from
the transition tier. If PostRestoreObject API is
invoked, the transitioned object can be restored for
duration specified to the source cluster.
allow directories to be replicated as well, along with
their delete markers in replication.
Bonus fix to fix bloom filter updates for directories
to be preserved.
Delete marker replication is implemented for V2
configuration specified in AWS spec (though AWS
allows it only in the V1 configuration).
This PR also brings in a MinIO only extension of
replicating permanent deletes, i.e. deletes specifying
version id are replicated to target cluster.
this reduces allocations in order of magnitude
Also, revert "erasure: delete dangling objects automatically (#10765)"
affects list caching should be investigated.
Design: https://gist.github.com/klauspost/025c09b48ed4a1293c917cecfabdf21c
Gist of improvements:
* Cross-server caching and listing will use the same data across servers and requests.
* Lists can be arbitrarily resumed at a constant speed.
* Metadata for all files scanned is stored for streaming retrieval.
* The existing bloom filters controlled by the crawler is used for validating caches.
* Concurrent requests for the same data (or parts of it) will not spawn additional walkers.
* Listing a subdirectory of an existing recursive cache will use the cache.
* All listing operations are fully streamable so the number of objects in a bucket no
longer dictates the amount of memory.
* Listings can be handled by any server within the cluster.
* Caches are cleaned up when out of date or superseded by a more recent one.
- select lockers which are non-local and online to have
affinity towards remote servers for lock contention
- optimize lock retry interval to avoid sending too many
messages during lock contention, reduces average CPU
usage as well
- if bucket is not set, when deleteObject fails make sure
setPutObjHeaders() honors lifecycle only if bucket name
is set.
- fix top locks to list out always the oldest lockers always,
avoid getting bogged down into map's unordered nature.
This is to ensure that Go contexts work properly, after some
interesting experiments I found that Go net/http doesn't
cancel the context when Body is non-zero and hasn't been
read till EOF.
The following gist explains this, this can lead to pile up
of go-routines on the server which will never be canceled
and will die at a really later point in time, which can
simply overwhelm the server.
https://gist.github.com/harshavardhana/c51dcfd055780eaeb71db54f9c589150
To avoid this refactor the locking such that we take locks after we
have started reading from the body and only take locks when needed.
Also, remove contextReader as it's not useful, doesn't work as expected
context is not canceled until the body reaches EOF so there is no point
in wrapping it with context and putting a `select {` on it which
can unnecessarily increase the CPU overhead.
We will still use the context to cancel the lockers etc.
Additional simplification in the locker code to avoid timers
as re-using them is a complicated ordeal avoid them in
the hot path, since locking is very common this may avoid
lots of allocations.
MaxConnsPerHost can potentially hang a call without any
way to timeout, we do not need this setting for our proxy
and gateway implementations instead IdleConn settings are
good enough.
Also ensure to use NewRequestWithContext and make sure to
take the disks offline only for network errors.
Fixes#10304
Add context to all (non-trivial) calls to the storage layer.
Contexts are propagated through the REST client.
- `context.TODO()` is left in place for the places where it needs to be added to the caller.
- `endWalkCh` could probably be removed from the walkers, but no changes so far.
The "dangerous" part is that now a caller disconnecting *will* propagate down, so a
"delete" operation will now be interrupted. In some cases we might want to disconnect
this functionality so the operation completes if it has started, leaving the system in a cleaner state.
- delete-marker should be created on a suspended bucket as `null`
- delete-marker should delete any pre-existing `null` versioned
object and create an entry `null`
when source and destination are same and versioning is enabled
on the destination bucket - we do not need to re-create the entire
object once again to optimize on space utilization.
Cases this PR is not supporting
- any pre-existing legacy object will not
be preserved in this manner, meaning a new
dataDir will be created.
- key-rotation and storage class changes
of course will never re-use the dataDir
With reduced parity our write quorum should be same
as read quorum, but code was still assuming
```
readQuorum+1
```
In all situations which is not necessary.