Delete marker replication is implemented for V2
configuration specified in AWS spec (though AWS
allows it only in the V1 configuration).
This PR also brings in a MinIO only extension of
replicating permanent deletes, i.e. deletes specifying
version id are replicated to target cluster.
configurable remote transport timeouts for some special cases
where this value needs to be bumped to a higher value when
transferring large data between federated instances.
This PR adds a DNS target that ensures to update an entry
into Kubernetes operator when a bucket is created or deleted.
See minio/operator#264 for details.
Co-authored-by: Harshavardhana <harsha@minio.io>
- delete-marker should be created on a suspended bucket as `null`
- delete-marker should delete any pre-existing `null` versioned
object and create an entry `null`
Use a separate client for these calls that can take a long time.
Add request context to these so they are canceled when the client
disconnects instead except for ListObject which doesn't have any equivalent.
- Implement a new xl.json 2.0.0 format to support,
this moves the entire marshaling logic to POSIX
layer, top layer always consumes a common FileInfo
construct which simplifies the metadata reads.
- Implement list object versions
- Migrate to siphash from crchash for new deployments
for object placements.
Fixes#2111
Additionally also fix STS logs to filter out LDAP
password to be sent out in audit logs.
Bonus fix handle the reload of users properly by
making sure to preserve the newer users during the
reload to be not invalidated.
Fixes#9707Fixes#9644Fixes#9651
some clients such as veeam expect the x-amz-meta to
be sent in lower cased form, while this does indeed
defeats the HTTP protocol contract it is harder to
change these applications, while these applications
get fixed appropriately in future.
x-amz-meta is usually sent in lowercased form
by AWS S3 and some applications like veeam
incorrectly end up relying on the case sensitivity
of the HTTP headers.
Bonus fixes
- Fix the iso8601 time format to keep it same as
AWS S3 response
- Increase maxObjectList to 50,000 and use
maxDeleteList as 10,000 whenever multi-object
deletes are needed.
size calculation in crawler was using the real size
of the object instead of its actual size i.e either
a decrypted or uncompressed size.
this is needed to make sure all other accounting
such as bucket quota and mcs UI to display the
correct values.
this is a major overhaul by migrating off all
bucket metadata related configs into a single
object '.metadata.bin' this allows us for faster
bootups across 1000's of buckets and as well
as keeps the code simple enough for future
work and additions.
Additionally also fixes#9396, #9394
This PR is to ensure that we call the relevant object
layer APIs for necessary S3 API level functionalities
allowing gateway implementations to return proper
errors as NotImplemented{}
This allows for all our tests in mint to behave
appropriately and can be handled appropriately as
well.
We should allow quorum errors to be send upwards
such that caller can retry while reading bucket
encryption/policy configs when server is starting
up, this allows distributed setups to load the
configuration properly.
Current code didn't facilitate this and would have
never loaded the actual configs during rolling,
server restarts.
global WORM mode is a complex piece for which
the time has passed, with the advent of S3 compatible
object locking and retention implementation global
WORM is sort of deprecated, this has been mentioned
in our documentation for some time, now the time
has come for this to go.
This commit fixes a performance issue caused
by too many calls to the external KMS - i.e.
for single-part PUT requests.
In general, the issue is caused by a sub-optimal
code structure. In particular, when the server
encrypts an object it requests a new data encryption
key from the KMS. With this key it does some key
derivation and encrypts the object content and
ETag.
However, to behave S3-compatible the MinIO server
has to return the plaintext ETag to the client
in case SSE-S3.
Therefore, the server code used to decrypt the
(previously encrypted) ETag again by requesting
the data encryption key (KMS decrypt API) from
the KMS.
This leads to 2 KMS API calls (1 generate key and
1 decrypt key) per PUT operation - while only
one KMS call is necessary.
This commit fixes this by fetching a data key only
once from the KMS and keeping the derived object
encryption key around (for the lifetime of the request).
This leads to a significant performance improvement
w.r.t. to PUT workloads:
```
Operation: PUT
Operations: 161 -> 239
Duration: 28s -> 29s
* Average: +47.56% (+25.8 MiB/s) throughput, +47.56% (+2.6) obj/s
* Fastest: +55.49% (+34.5 MiB/s) throughput, +55.49% (+3.5) obj/s
* 50% Median: +58.24% (+32.8 MiB/s) throughput, +58.24% (+3.3) obj/s
* Slowest: +1.83% (+0.6 MiB/s) throughput, +1.83% (+0.1) obj/s
```
This PR also tries to simplify the approach taken in
object-locking implementation by preferential treatment
given towards full validation.
This in-turn has fixed couple of bugs related to
how policy should have been honored when ByPassGovernance
is provided.
Simplifies code a bit, but also duplicates code intentionally
for clarity due to complex nature of object locking
implementation.