minio/cmd/erasure-metadata.go

680 lines
20 KiB
Go
Raw Normal View History

// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package cmd
import (
"context"
"encoding/hex"
"fmt"
"sort"
"strconv"
"strings"
"time"
"github.com/minio/minio/internal/amztime"
"github.com/minio/minio/internal/bucket/replication"
"github.com/minio/minio/internal/crypto"
"github.com/minio/minio/internal/hash/sha256"
xhttp "github.com/minio/minio/internal/http"
"github.com/minio/minio/internal/logger"
2023-09-04 15:57:37 -04:00
"github.com/minio/pkg/v2/sync/errgroup"
"github.com/minio/sio"
)
// Object was stored with additional erasure codes due to degraded system at upload time
const minIOErasureUpgraded = "x-minio-internal-erasure-upgraded"
const erasureAlgorithm = "rs-vandermonde"
// GetChecksumInfo - get checksum of a part.
func (e ErasureInfo) GetChecksumInfo(partNumber int) (ckSum ChecksumInfo) {
for _, sum := range e.Checksums {
if sum.PartNumber == partNumber {
// Return the checksum
return sum
}
}
return ChecksumInfo{Algorithm: DefaultBitrotAlgorithm}
}
// ShardFileSize - returns final erasure size from original size.
func (e ErasureInfo) ShardFileSize(totalLength int64) int64 {
if totalLength == 0 {
return 0
}
if totalLength == -1 {
return -1
}
numShards := totalLength / e.BlockSize
lastBlockSize := totalLength % e.BlockSize
lastShardSize := ceilFrac(lastBlockSize, int64(e.DataBlocks))
return numShards*e.ShardSize() + lastShardSize
}
// ShardSize - returns actual shared size from erasure blockSize.
func (e ErasureInfo) ShardSize() int64 {
return ceilFrac(e.BlockSize, int64(e.DataBlocks))
}
// IsValid - tells if erasure info fields are valid.
func (fi FileInfo) IsValid() bool {
if fi.Deleted {
// Delete marker has no data, no need to check
// for erasure coding information
return true
}
dataBlocks := fi.Erasure.DataBlocks
parityBlocks := fi.Erasure.ParityBlocks
correctIndexes := (fi.Erasure.Index > 0 &&
fi.Erasure.Index <= dataBlocks+parityBlocks &&
len(fi.Erasure.Distribution) == (dataBlocks+parityBlocks))
return ((dataBlocks >= parityBlocks) &&
(dataBlocks > 0) && (parityBlocks >= 0) &&
correctIndexes)
}
func (fi FileInfo) checkMultipart() (int64, bool) {
if len(fi.Parts) == 0 {
return 0, false
}
if !crypto.IsMultiPart(fi.Metadata) {
return 0, false
}
var size int64
for _, part := range fi.Parts {
psize, err := sio.DecryptedSize(uint64(part.Size))
if err != nil {
return 0, false
}
size += int64(psize)
}
return size, len(extractETag(fi.Metadata)) != 32
}
// GetActualSize - returns the actual size of the stored object
func (fi FileInfo) GetActualSize() (int64, error) {
if _, ok := fi.Metadata[ReservedMetadataPrefix+"compression"]; ok {
sizeStr, ok := fi.Metadata[ReservedMetadataPrefix+"actual-size"]
if !ok {
return -1, errInvalidDecompressedSize
}
size, err := strconv.ParseInt(sizeStr, 10, 64)
if err != nil {
return -1, errInvalidDecompressedSize
}
return size, nil
}
if _, ok := crypto.IsEncrypted(fi.Metadata); ok {
size, ok := fi.checkMultipart()
if !ok {
size, err := sio.DecryptedSize(uint64(fi.Size))
if err != nil {
err = errObjectTampered // assign correct error type
}
return int64(size), err
}
return size, nil
}
return fi.Size, nil
}
// ToObjectInfo - Converts metadata to object info.
func (fi FileInfo) ToObjectInfo(bucket, object string, versioned bool) ObjectInfo {
object = decodeDirObject(object)
versionID := fi.VersionID
if versioned && versionID == "" {
versionID = nullVersionID
}
objInfo := ObjectInfo{
IsDir: HasSuffix(object, SlashSeparator),
Bucket: bucket,
Name: object,
ParityBlocks: fi.Erasure.ParityBlocks,
DataBlocks: fi.Erasure.DataBlocks,
VersionID: versionID,
IsLatest: fi.IsLatest,
DeleteMarker: fi.Deleted,
Size: fi.Size,
ModTime: fi.ModTime,
Legacy: fi.XLV1,
ContentType: fi.Metadata["content-type"],
ContentEncoding: fi.Metadata["content-encoding"],
NumVersions: fi.NumVersions,
SuccessorModTime: fi.SuccessorModTime,
CacheControl: fi.Metadata["cache-control"],
}
if exp, ok := fi.Metadata["expires"]; ok {
if t, err := amztime.ParseHeader(exp); err == nil {
objInfo.Expires = t.UTC()
}
}
objInfo.backendType = BackendErasure
// Extract etag from metadata.
objInfo.ETag = extractETag(fi.Metadata)
// Add user tags to the object info
tags := fi.Metadata[xhttp.AmzObjectTagging]
if len(tags) != 0 {
objInfo.UserTags = tags
}
// Add replication status to the object info
objInfo.ReplicationStatusInternal = fi.ReplicationState.ReplicationStatusInternal
objInfo.VersionPurgeStatusInternal = fi.ReplicationState.VersionPurgeStatusInternal
objInfo.ReplicationStatus = fi.ReplicationStatus()
if objInfo.ReplicationStatus.Empty() { // overlay x-amx-replication-status if present for replicas
if st, ok := fi.Metadata[xhttp.AmzBucketReplicationStatus]; ok && st == string(replication.Replica) {
objInfo.ReplicationStatus = replication.StatusType(st)
}
}
objInfo.VersionPurgeStatus = fi.VersionPurgeStatus()
objInfo.TransitionedObject = TransitionedObject{
Name: fi.TransitionedObjName,
VersionID: fi.TransitionVersionID,
Status: fi.TransitionStatus,
FreeVersion: fi.TierFreeVersion(),
Tier: fi.TransitionTier,
}
// etag/md5Sum has already been extracted. We need to
// remove to avoid it from appearing as part of
// response headers. e.g, X-Minio-* or X-Amz-*.
// Tags have also been extracted, we remove that as well.
objInfo.UserDefined = cleanMetadata(fi.Metadata)
// All the parts per object.
objInfo.Parts = fi.Parts
// Update storage class
if fi.TransitionTier != "" {
objInfo.StorageClass = fi.TransitionTier
} else if sc, ok := fi.Metadata[xhttp.AmzStorageClass]; ok {
objInfo.StorageClass = sc
} else {
objInfo.StorageClass = globalMinioDefaultStorageClass
}
// set restore status for transitioned object
restoreHdr, ok := fi.Metadata[xhttp.AmzRestore]
if ok {
if restoreStatus, err := parseRestoreObjStatus(restoreHdr); err == nil {
objInfo.RestoreOngoing = restoreStatus.Ongoing()
objInfo.RestoreExpires, _ = restoreStatus.Expiry()
}
}
2022-08-29 19:57:16 -04:00
objInfo.Checksum = fi.Checksum
objInfo.Inlined = fi.InlineData()
// Success.
return objInfo
}
// TransitionInfoEquals returns true if transition related information are equal, false otherwise.
func (fi FileInfo) TransitionInfoEquals(ofi FileInfo) bool {
switch {
case fi.TransitionStatus != ofi.TransitionStatus,
fi.TransitionTier != ofi.TransitionTier,
fi.TransitionedObjName != ofi.TransitionedObjName,
fi.TransitionVersionID != ofi.TransitionVersionID:
return false
}
return true
}
// MetadataEquals returns true if FileInfos Metadata maps are equal, false otherwise.
func (fi FileInfo) MetadataEquals(ofi FileInfo) bool {
if len(fi.Metadata) != len(ofi.Metadata) {
return false
}
for k, v := range fi.Metadata {
if ov, ok := ofi.Metadata[k]; !ok || ov != v {
return false
}
}
return true
}
// ReplicationInfoEquals returns true if server-side replication related fields are equal, false otherwise.
func (fi FileInfo) ReplicationInfoEquals(ofi FileInfo) bool {
switch {
case fi.MarkDeleted != ofi.MarkDeleted,
!fi.ReplicationState.Equal(ofi.ReplicationState):
return false
}
return true
}
// objectPartIndex - returns the index of matching object part number.
func objectPartIndex(parts []ObjectPartInfo, partNumber int) int {
for i, part := range parts {
if partNumber == part.Number {
return i
}
}
return -1
}
// AddObjectPart - add a new object part in order.
2022-08-29 19:57:16 -04:00
func (fi *FileInfo) AddObjectPart(partNumber int, partETag string, partSize, actualSize int64, modTime time.Time, idx []byte, checksums map[string]string) {
partInfo := ObjectPartInfo{
Number: partNumber,
ETag: partETag,
Size: partSize,
ActualSize: actualSize,
ModTime: modTime,
2022-07-11 20:30:56 -04:00
Index: idx,
2022-08-29 19:57:16 -04:00
Checksums: checksums,
}
// Update part info if it already exists.
for i, part := range fi.Parts {
if partNumber == part.Number {
fi.Parts[i] = partInfo
return
}
}
// Proceed to include new part info.
fi.Parts = append(fi.Parts, partInfo)
// Parts in FileInfo should be in sorted order by part number.
sort.Slice(fi.Parts, func(i, j int) bool { return fi.Parts[i].Number < fi.Parts[j].Number })
}
// ObjectToPartOffset - translate offset of an object to offset of its individual part.
func (fi FileInfo) ObjectToPartOffset(ctx context.Context, offset int64) (partIndex int, partOffset int64, err error) {
if offset == 0 {
// Special case - if offset is 0, then partIndex and partOffset are always 0.
return 0, 0, nil
}
partOffset = offset
// Seek until object offset maps to a particular part offset.
for i, part := range fi.Parts {
partIndex = i
// Offset is smaller than size we have reached the proper part offset.
if partOffset < part.Size {
return partIndex, partOffset, nil
}
// Continue to towards the next part.
partOffset -= part.Size
}
logger.LogIf(ctx, InvalidRange{})
// Offset beyond the size of the object return InvalidRange.
return 0, 0, InvalidRange{}
}
func findFileInfoInQuorum(ctx context.Context, metaArr []FileInfo, modTime time.Time, etag string, quorum int) (FileInfo, error) {
// with less quorum return error.
if quorum < 1 {
return FileInfo{}, errErasureReadQuorum
}
metaHashes := make([]string, len(metaArr))
h := sha256.New()
for i, meta := range metaArr {
if !meta.IsValid() {
continue
}
etagOnly := modTime.Equal(timeSentinel) && (etag != "" && etag == meta.Metadata["etag"])
mtimeValid := meta.ModTime.Equal(modTime)
if mtimeValid || etagOnly {
fmt.Fprintf(h, "%v", meta.XLV1)
if !etagOnly {
// Verify dataDir is same only when mtime is valid and etag is not considered.
fmt.Fprintf(h, "%v", meta.GetDataDir())
}
for _, part := range meta.Parts {
fmt.Fprintf(h, "part.%d", part.Number)
}
if !meta.Deleted && meta.Size != 0 {
fmt.Fprintf(h, "%v+%v", meta.Erasure.DataBlocks, meta.Erasure.ParityBlocks)
fmt.Fprintf(h, "%v", meta.Erasure.Distribution)
}
// ILM transition fields
fmt.Fprint(h, meta.TransitionStatus)
fmt.Fprint(h, meta.TransitionTier)
fmt.Fprint(h, meta.TransitionedObjName)
fmt.Fprint(h, meta.TransitionVersionID)
// Server-side replication fields
fmt.Fprintf(h, "%v", meta.MarkDeleted)
fmt.Fprint(h, meta.Metadata[string(meta.ReplicationState.ReplicaStatus)])
fmt.Fprint(h, meta.Metadata[meta.ReplicationState.ReplicationStatusInternal])
fmt.Fprint(h, meta.Metadata[meta.ReplicationState.VersionPurgeStatusInternal])
metaHashes[i] = hex.EncodeToString(h.Sum(nil))
h.Reset()
}
}
metaHashCountMap := make(map[string]int)
for _, hash := range metaHashes {
if hash == "" {
continue
}
metaHashCountMap[hash]++
}
maxHash := ""
maxCount := 0
for hash, count := range metaHashCountMap {
if count > maxCount {
maxCount = count
maxHash = hash
}
}
if maxCount < quorum {
return FileInfo{}, errErasureReadQuorum
}
// Find the successor mod time in quorum, otherwise leave the
// candidate's successor modTime as found
succModTimeMap := make(map[time.Time]int)
var candidate FileInfo
var found bool
for i, hash := range metaHashes {
if hash == maxHash {
if metaArr[i].IsValid() {
if !found {
candidate = metaArr[i]
found = true
}
succModTimeMap[metaArr[i].SuccessorModTime]++
}
}
}
var succModTime time.Time
var smodTimeQuorum bool
for smodTime, count := range succModTimeMap {
if count >= quorum {
smodTimeQuorum = true
succModTime = smodTime
break
}
}
if found {
if smodTimeQuorum {
candidate.SuccessorModTime = succModTime
candidate.IsLatest = succModTime.IsZero()
}
return candidate, nil
}
return FileInfo{}, errErasureReadQuorum
}
func pickValidDiskTimeWithQuorum(metaArr []FileInfo, quorum int) time.Time {
diskMTimes := listObjectDiskMtimes(metaArr)
diskMTime, diskMaxima := commonTimeAndOccurence(diskMTimes, shardDiskTimeDelta)
if diskMaxima >= quorum {
return diskMTime
}
return timeSentinel
}
// pickValidFileInfo - picks one valid FileInfo content and returns from a
// slice of FileInfo.
func pickValidFileInfo(ctx context.Context, metaArr []FileInfo, modTime time.Time, etag string, quorum int) (FileInfo, error) {
return findFileInfoInQuorum(ctx, metaArr, modTime, etag, quorum)
}
// writeUniqueFileInfo - writes unique `xl.meta` content for each disk concurrently.
func writeUniqueFileInfo(ctx context.Context, disks []StorageAPI, bucket, prefix string, files []FileInfo, quorum int) ([]StorageAPI, error) {
g := errgroup.WithNErrs(len(disks))
// Start writing `xl.meta` to all disks in parallel.
for index := range disks {
index := index
g.Go(func() error {
if disks[index] == nil {
return errDiskNotFound
}
// Pick one FileInfo for a disk at index.
fi := files[index]
fi.Erasure.Index = index + 1
if fi.IsValid() {
return disks[index].WriteMetadata(ctx, bucket, prefix, fi)
}
return errCorruptedFormat
}, index)
}
// Wait for all the routines.
mErrs := g.Wait()
err := reduceWriteQuorumErrs(ctx, mErrs, objectOpIgnoredErrs, quorum)
return evalDisks(disks, mErrs), err
}
func commonParity(parities []int, defaultParityCount int) int {
N := len(parities)
occMap := make(map[int]int)
for _, p := range parities {
occMap[p]++
}
var maxOcc, cparity int
for parity, occ := range occMap {
if parity == -1 {
// Ignore non defined parity
continue
}
readQuorum := N - parity
if defaultParityCount > 0 && parity == 0 {
// In this case, parity == 0 implies that this object version is a
// delete marker
readQuorum = N/2 + 1
}
if occ < readQuorum {
// Ignore this parity since we don't have enough shards for read quorum
continue
}
if occ > maxOcc {
maxOcc = occ
cparity = parity
}
}
if maxOcc == 0 {
// Did not found anything useful
return -1
}
return cparity
}
func listObjectParities(partsMetadata []FileInfo, errs []error) (parities []int) {
parities = make([]int, len(partsMetadata))
for index, metadata := range partsMetadata {
if errs[index] != nil {
parities[index] = -1
continue
}
if !metadata.IsValid() {
parities[index] = -1
continue
}
// Delete marker or zero byte objects take highest parity.
if metadata.Deleted || metadata.Size == 0 {
parities[index] = len(partsMetadata) / 2
} else {
parities[index] = metadata.Erasure.ParityBlocks
}
}
return
}
// Returns per object readQuorum and writeQuorum
// readQuorum is the min required disks to read data.
// writeQuorum is the min required disks to write data.
func objectQuorumFromMeta(ctx context.Context, partsMetaData []FileInfo, errs []error, defaultParityCount int) (objectReadQuorum, objectWriteQuorum int, err error) {
// There should be atleast half correct entries, if not return failure
expectedRQuorum := len(partsMetaData) / 2
if defaultParityCount == 0 {
// if parity count is '0', we expected all entries to be present.
expectedRQuorum = len(partsMetaData)
}
reducedErr := reduceReadQuorumErrs(ctx, errs, objectOpIgnoredErrs, expectedRQuorum)
if reducedErr != nil {
return -1, -1, reducedErr
}
// special case when parity is '0'
if defaultParityCount == 0 {
return len(partsMetaData), len(partsMetaData), nil
}
parities := listObjectParities(partsMetaData, errs)
parityBlocks := commonParity(parities, defaultParityCount)
if parityBlocks < 0 {
return -1, -1, errErasureReadQuorum
}
if parityBlocks == 0 {
// For delete markers do not use 'defaultParityCount' as it is not expected to be the case.
// Use maximum allowed read quorum instead, writeQuorum+1 is returned for compatibility sake
// but there are no callers that shall be using this.
readQuorum := len(partsMetaData) / 2
return readQuorum, readQuorum + 1, nil
}
dataBlocks := len(partsMetaData) - parityBlocks
writeQuorum := dataBlocks
if dataBlocks == parityBlocks {
writeQuorum++
}
// Since all the valid erasure code meta updated at the same time are equivalent, pass dataBlocks
// from latestFileInfo to get the quorum
return dataBlocks, writeQuorum, nil
}
const (
tierFVID = "tier-free-versionID"
tierFVMarker = "tier-free-marker"
)
// SetTierFreeVersionID sets free-version's versionID. This method is used by
// object layer to pass down a versionID to set for a free-version that may be
// created.
func (fi *FileInfo) SetTierFreeVersionID(versionID string) {
if fi.Metadata == nil {
fi.Metadata = make(map[string]string)
}
fi.Metadata[ReservedMetadataPrefixLower+tierFVID] = versionID
}
// TierFreeVersionID returns the free-version's version id.
func (fi *FileInfo) TierFreeVersionID() string {
return fi.Metadata[ReservedMetadataPrefixLower+tierFVID]
}
// SetTierFreeVersion sets fi as a free-version. This method is used by
// lower layers to indicate a free-version.
func (fi *FileInfo) SetTierFreeVersion() {
if fi.Metadata == nil {
fi.Metadata = make(map[string]string)
}
fi.Metadata[ReservedMetadataPrefixLower+tierFVMarker] = ""
}
// TierFreeVersion returns true if version is a free-version.
func (fi *FileInfo) TierFreeVersion() bool {
_, ok := fi.Metadata[ReservedMetadataPrefixLower+tierFVMarker]
return ok
}
// IsRestoreObjReq returns true if fi corresponds to a RestoreObject request.
func (fi *FileInfo) IsRestoreObjReq() bool {
if restoreHdr, ok := fi.Metadata[xhttp.AmzRestore]; ok {
if restoreStatus, err := parseRestoreObjStatus(restoreHdr); err == nil {
if !restoreStatus.Ongoing() {
return true
}
}
}
return false
}
// VersionPurgeStatus returns overall version purge status for this object version across targets
func (fi *FileInfo) VersionPurgeStatus() VersionPurgeStatusType {
return fi.ReplicationState.CompositeVersionPurgeStatus()
}
// ReplicationStatus returns overall version replication status for this object version across targets
func (fi *FileInfo) ReplicationStatus() replication.StatusType {
return fi.ReplicationState.CompositeReplicationStatus()
}
// DeleteMarkerReplicationStatus returns overall replication status for this delete marker version across targets
func (fi *FileInfo) DeleteMarkerReplicationStatus() replication.StatusType {
if fi.Deleted {
return fi.ReplicationState.CompositeReplicationStatus()
}
return replication.StatusType("")
}
// GetInternalReplicationState is a wrapper method to fetch internal replication state from the map m
func GetInternalReplicationState(m map[string][]byte) ReplicationState {
m1 := make(map[string]string, len(m))
for k, v := range m {
m1[k] = string(v)
}
return getInternalReplicationState(m1)
}
// getInternalReplicationState fetches internal replication state from the map m
func getInternalReplicationState(m map[string]string) ReplicationState {
d := ReplicationState{}
for k, v := range m {
switch {
case equals(k, ReservedMetadataPrefixLower+ReplicationTimestamp):
2023-06-14 10:49:13 -04:00
d.ReplicaTimeStamp, _ = amztime.ParseReplicationTS(v)
case equals(k, ReservedMetadataPrefixLower+ReplicaTimestamp):
2023-06-14 10:49:13 -04:00
d.ReplicaTimeStamp, _ = amztime.ParseReplicationTS(v)
case equals(k, ReservedMetadataPrefixLower+ReplicaStatus):
d.ReplicaStatus = replication.StatusType(v)
case equals(k, ReservedMetadataPrefixLower+ReplicationStatus):
d.ReplicationStatusInternal = v
d.Targets = replicationStatusesMap(v)
case equals(k, VersionPurgeStatusKey):
d.VersionPurgeStatusInternal = v
d.PurgeTargets = versionPurgeStatusesMap(v)
case strings.HasPrefix(k, ReservedMetadataPrefixLower+ReplicationReset):
arn := strings.TrimPrefix(k, fmt.Sprintf("%s-", ReservedMetadataPrefixLower+ReplicationReset))
if d.ResetStatusesMap == nil {
d.ResetStatusesMap = make(map[string]string, 1)
}
d.ResetStatusesMap[arn] = v
}
}
return d
}