mirror of https://github.com/ventoy/Ventoy.git
compress 7za.exe
This commit is contained in:
parent
d2e5930520
commit
32643ecdbb
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -1110,11 +1110,31 @@ static BOOL check_tar_archive(const char *archive, CHAR *tarName)
|
|||
return FALSE;
|
||||
}
|
||||
|
||||
static UCHAR *g_unxz_buffer = NULL;
|
||||
static int g_unxz_len = 0;
|
||||
|
||||
static void unxz_error(char *x)
|
||||
{
|
||||
Log("%s", x);
|
||||
}
|
||||
|
||||
static int unxz_flush(void *src, unsigned int size)
|
||||
{
|
||||
memcpy(g_unxz_buffer + g_unxz_len, src, size);
|
||||
g_unxz_len += (int)size;
|
||||
|
||||
return (int)size;
|
||||
}
|
||||
|
||||
static int DecompressInjectionArchive(const char *archive, DWORD PhyDrive)
|
||||
{
|
||||
int rc = 1;
|
||||
int writelen = 0;
|
||||
UCHAR *Buffer = NULL;
|
||||
UCHAR *RawBuffer = NULL;
|
||||
BOOL bRet;
|
||||
DWORD dwBytes;
|
||||
DWORD dwSize;
|
||||
HANDLE hDrive;
|
||||
HANDLE hOut;
|
||||
DWORD flags = CREATE_NO_WINDOW;
|
||||
|
@ -1154,11 +1174,40 @@ static int DecompressInjectionArchive(const char *archive, DWORD PhyDrive)
|
|||
{
|
||||
if (g_system_bit == 64)
|
||||
{
|
||||
CopyFileFromFatDisk("/ventoy/7z/64/7za.exe", "ventoy\\7za.exe");
|
||||
CopyFileFromFatDisk("/ventoy/7z/64/7za.xz", "ventoy\\7za.xz");
|
||||
}
|
||||
else
|
||||
{
|
||||
CopyFileFromFatDisk("/ventoy/7z/32/7za.exe", "ventoy\\7za.exe");
|
||||
CopyFileFromFatDisk("/ventoy/7z/32/7za.xz", "ventoy\\7za.xz");
|
||||
}
|
||||
|
||||
ReadWholeFile2Buf("ventoy\\7za.xz", &Buffer, &dwSize);
|
||||
Log("7za.xz file size:%u", dwSize);
|
||||
|
||||
RawBuffer = malloc(SIZE_1MB * 4);
|
||||
if (RawBuffer)
|
||||
{
|
||||
g_unxz_buffer = RawBuffer;
|
||||
g_unxz_len = 0;
|
||||
unxz(Buffer, (int)dwSize, NULL, unxz_flush, NULL, &writelen, unxz_error);
|
||||
if (writelen == (int)dwSize)
|
||||
{
|
||||
Log("Decompress success 7za.xz(%u) ---> 7za.exe(%d)", dwSize, g_unxz_len);
|
||||
}
|
||||
else
|
||||
{
|
||||
Log("Decompress failed 7za.xz(%u) ---> 7za.exe(%u)", dwSize, dwSize);
|
||||
}
|
||||
|
||||
SaveBuffer2File("ventoy\\7za.exe", RawBuffer, (DWORD)g_unxz_len);
|
||||
|
||||
g_unxz_buffer = NULL;
|
||||
g_unxz_len = 0;
|
||||
free(RawBuffer);
|
||||
}
|
||||
else
|
||||
{
|
||||
Log("Failed to alloc 4MB memory");
|
||||
}
|
||||
|
||||
sprintf_s(StrBuf, sizeof(StrBuf), "ventoy\\7za.exe x -y -aoa -oX:\\ %s", archive);
|
||||
|
|
|
@ -153,4 +153,10 @@ typedef struct VTOY_GPT_INFO
|
|||
|
||||
#define LASTERR GetLastError()
|
||||
|
||||
int unxz(unsigned char *in, int in_size,
|
||||
int(*fill)(void *dest, unsigned int size),
|
||||
int(*flush)(void *src, unsigned int size),
|
||||
unsigned char *out, int *in_used,
|
||||
void(*error)(char *x));
|
||||
|
||||
#endif
|
||||
|
|
|
@ -69,22 +69,22 @@
|
|||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
|
||||
<LinkIncremental>true</LinkIncremental>
|
||||
<TargetName>$(ProjectName)32</TargetName>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(IncludePath)</IncludePath>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(ProjectDir)\xz-embedded-20130513\linux\include;$(ProjectDir)\xz-embedded-20130513\linux\include\linux;$(ProjectDir)\xz-embedded-20130513\userspace;$(IncludePath)</IncludePath>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
|
||||
<LinkIncremental>true</LinkIncremental>
|
||||
<TargetName>$(ProjectName)64</TargetName>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(IncludePath)</IncludePath>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(ProjectDir)\xz-embedded-20130513\linux\include;$(ProjectDir)\xz-embedded-20130513\linux\include\linux;$(ProjectDir)\xz-embedded-20130513\userspace;$(IncludePath)</IncludePath>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
|
||||
<LinkIncremental>false</LinkIncremental>
|
||||
<TargetName>$(ProjectName)32</TargetName>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(IncludePath)</IncludePath>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(ProjectDir)\xz-embedded-20130513\linux\include;$(ProjectDir)\xz-embedded-20130513\linux\include\linux;$(ProjectDir)\xz-embedded-20130513\userspace;$(IncludePath)</IncludePath>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
|
||||
<LinkIncremental>false</LinkIncremental>
|
||||
<TargetName>$(ProjectName)64</TargetName>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(IncludePath)</IncludePath>
|
||||
<IncludePath>$(ProjectDir)\fat_io_lib;$(ProjectDir)\xz-embedded-20130513\linux\include;$(ProjectDir)\xz-embedded-20130513\linux\include\linux;$(ProjectDir)\xz-embedded-20130513\userspace;$(IncludePath)</IncludePath>
|
||||
</PropertyGroup>
|
||||
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
|
||||
<ClCompile>
|
||||
|
@ -92,7 +92,7 @@
|
|||
</PrecompiledHeader>
|
||||
<WarningLevel>Level3</WarningLevel>
|
||||
<Optimization>Disabled</Optimization>
|
||||
<PreprocessorDefinitions>VTOY_32;FATFS_INC_FORMAT_SUPPORT=0;WIN32;_DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<PreprocessorDefinitions>STATIC=static;INIT=;VTOY_32;FATFS_INC_FORMAT_SUPPORT=0;WIN32;_DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<SDLCheck>true</SDLCheck>
|
||||
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
|
||||
</ClCompile>
|
||||
|
@ -108,7 +108,7 @@
|
|||
</PrecompiledHeader>
|
||||
<WarningLevel>Level3</WarningLevel>
|
||||
<Optimization>Disabled</Optimization>
|
||||
<PreprocessorDefinitions>VTOY_64;FATFS_INC_FORMAT_SUPPORT=0;WIN32;_DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<PreprocessorDefinitions>STATIC=static;INIT=;VTOY_64;FATFS_INC_FORMAT_SUPPORT=0;WIN32;_DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<SDLCheck>true</SDLCheck>
|
||||
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
|
||||
</ClCompile>
|
||||
|
@ -126,7 +126,7 @@
|
|||
<Optimization>MaxSpeed</Optimization>
|
||||
<FunctionLevelLinking>true</FunctionLevelLinking>
|
||||
<IntrinsicFunctions>true</IntrinsicFunctions>
|
||||
<PreprocessorDefinitions>VTOY_BIT=32;FATFS_INC_FORMAT_SUPPORT=0;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<PreprocessorDefinitions>STATIC=static;INIT=;VTOY_BIT=32;FATFS_INC_FORMAT_SUPPORT=0;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<SDLCheck>true</SDLCheck>
|
||||
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
|
||||
</ClCompile>
|
||||
|
@ -146,7 +146,7 @@
|
|||
<Optimization>MaxSpeed</Optimization>
|
||||
<FunctionLevelLinking>true</FunctionLevelLinking>
|
||||
<IntrinsicFunctions>true</IntrinsicFunctions>
|
||||
<PreprocessorDefinitions>VTOY_BIT=64;FATFS_INC_FORMAT_SUPPORT=0;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<PreprocessorDefinitions>STATIC=static;INIT=;VTOY_BIT=64;FATFS_INC_FORMAT_SUPPORT=0;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<SDLCheck>true</SDLCheck>
|
||||
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
|
||||
</ClCompile>
|
||||
|
@ -169,6 +169,7 @@
|
|||
<ClCompile Include="fat_io_lib\fat_table.c" />
|
||||
<ClCompile Include="fat_io_lib\fat_write.c" />
|
||||
<ClCompile Include="vtoyjump.c" />
|
||||
<ClCompile Include="xz-embedded-20130513\linux\lib\decompress_unxz.c" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="fat_io_lib\fat_access.h" />
|
||||
|
|
|
@ -42,6 +42,9 @@
|
|||
<ClCompile Include="fat_io_lib\fat_write.c">
|
||||
<Filter>源文件</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="xz-embedded-20130513\linux\lib\decompress_unxz.c">
|
||||
<Filter>源文件</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="vtoyjump.h">
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
|
||||
Licensing of XZ Embedded
|
||||
========================
|
||||
|
||||
All the files in this package have been written by Lasse Collin
|
||||
and/or Igor Pavlov. All these files have been put into the
|
||||
public domain. You can do whatever you want with these files.
|
||||
|
||||
As usual, this software is provided "as is", without any warranty.
|
||||
|
|
@ -0,0 +1,163 @@
|
|||
|
||||
XZ Embedded
|
||||
===========
|
||||
|
||||
XZ Embedded is a relatively small, limited implementation of the .xz
|
||||
file format. Currently only decoding is implemented.
|
||||
|
||||
XZ Embedded was written for use in the Linux kernel, but the code can
|
||||
be easily used in other environments too, including regular userspace
|
||||
applications. See userspace/xzminidec.c for an example program.
|
||||
|
||||
This README contains information that is useful only when the copy
|
||||
of XZ Embedded isn't part of the Linux kernel tree. You should also
|
||||
read linux/Documentation/xz.txt even if you aren't using XZ Embedded
|
||||
as part of Linux; information in that file is not repeated in this
|
||||
README.
|
||||
|
||||
Compiling the Linux kernel module
|
||||
|
||||
The xz_dec module depends on crc32 module, so make sure that you have
|
||||
it enabled (CONFIG_CRC32).
|
||||
|
||||
Building the xz_dec and xz_dec_test modules without support for BCJ
|
||||
filters:
|
||||
|
||||
cd linux/lib/xz
|
||||
make -C /path/to/kernel/source \
|
||||
KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
|
||||
CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m
|
||||
|
||||
Building the xz_dec and xz_dec_test modules with support for BCJ
|
||||
filters:
|
||||
|
||||
cd linux/lib/xz
|
||||
make -C /path/to/kernel/source \
|
||||
KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
|
||||
CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m CONFIG_XZ_DEC_BCJ=y \
|
||||
CONFIG_XZ_DEC_X86=y CONFIG_XZ_DEC_POWERPC=y \
|
||||
CONFIG_XZ_DEC_IA64=y CONFIG_XZ_DEC_ARM=y \
|
||||
CONFIG_XZ_DEC_ARMTHUMB=y CONFIG_XZ_DEC_SPARC=y
|
||||
|
||||
If you want only one or a few of the BCJ filters, omit the appropriate
|
||||
variables. CONFIG_XZ_DEC_BCJ=y is always required to build the support
|
||||
code shared between all BCJ filters.
|
||||
|
||||
Most people don't need the xz_dec_test module. You can skip building
|
||||
it by omitting CONFIG_XZ_DEC_TEST=m from the make command line.
|
||||
|
||||
Compiler requirements
|
||||
|
||||
XZ Embedded should compile as either GNU-C89 (used in the Linux
|
||||
kernel) or with any C99 compiler. Getting the code to compile with
|
||||
non-GNU C89 compiler or a C++ compiler should be quite easy as
|
||||
long as there is a data type for unsigned 64-bit integer (or the
|
||||
code is modified not to support large files, which needs some more
|
||||
care than just using 32-bit integer instead of 64-bit).
|
||||
|
||||
If you use GCC, try to use a recent version. For example, on x86-32,
|
||||
xz_dec_lzma2.c compiled with GCC 3.3.6 is 15-25 % slower than when
|
||||
compiled with GCC 4.3.3.
|
||||
|
||||
Embedding into userspace applications
|
||||
|
||||
To embed the XZ decoder, copy the following files into a single
|
||||
directory in your source code tree:
|
||||
|
||||
linux/include/linux/xz.h
|
||||
linux/lib/xz/xz_crc32.c
|
||||
linux/lib/xz/xz_dec_lzma2.c
|
||||
linux/lib/xz/xz_dec_stream.c
|
||||
linux/lib/xz/xz_lzma2.h
|
||||
linux/lib/xz/xz_private.h
|
||||
linux/lib/xz/xz_stream.h
|
||||
userspace/xz_config.h
|
||||
|
||||
Alternatively, xz.h may be placed into a different directory but then
|
||||
that directory must be in the compiler include path when compiling
|
||||
the .c files.
|
||||
|
||||
Your code should use only the functions declared in xz.h. The rest of
|
||||
the .h files are meant only for internal use in XZ Embedded.
|
||||
|
||||
You may want to modify xz_config.h to be more suitable for your build
|
||||
environment. Probably you should at least skim through it even if the
|
||||
default file works as is.
|
||||
|
||||
Integrity check support
|
||||
|
||||
XZ Embedded always supports the integrity check types None and
|
||||
CRC32. Support for CRC64 is optional. SHA-256 is currently not
|
||||
supported in XZ Embedded although the .xz format does support it.
|
||||
The xz tool from XZ Utils uses CRC64 by default, but CRC32 is usually
|
||||
enough in embedded systems to keep the code size smaller.
|
||||
|
||||
If you want support for CRC64, you need to copy linux/lib/xz/xz_crc64.c
|
||||
into your application, and #define XZ_USE_CRC64 in xz_config.h or in
|
||||
compiler flags.
|
||||
|
||||
When using the internal CRC32 or CRC64, their lookup tables need to be
|
||||
initialized with xz_crc32_init() and xz_crc64_init(), respectively.
|
||||
See xz.h for details.
|
||||
|
||||
To use external CRC32 or CRC64 code instead of the code from
|
||||
xz_crc32.c or xz_crc64.c, the following #defines may be used
|
||||
in xz_config.h or in compiler flags:
|
||||
|
||||
#define XZ_INTERNAL_CRC32 0
|
||||
#define XZ_INTERNAL_CRC64 0
|
||||
|
||||
Then it is up to you to provide compatible xz_crc32() or xz_crc64()
|
||||
functions.
|
||||
|
||||
If the .xz file being decompressed uses an integrity check type that
|
||||
isn't supported by XZ Embedded, it is treated as an error and the
|
||||
file cannot be decompressed. For multi-call mode, this can be modified
|
||||
by #defining XZ_DEC_ANY_CHECK. Then xz_dec_run() will return
|
||||
XZ_UNSUPPORTED_CHECK when unsupported check type is detected. After
|
||||
that decompression can be continued normally except that the
|
||||
integrity check won't be verified. In single-call mode there's
|
||||
no way to continue decoding, so XZ_DEC_ANY_CHECK is almost useless
|
||||
in single-call mode.
|
||||
|
||||
BCJ filter support
|
||||
|
||||
If you want support for one or more BCJ filters, you need to copy also
|
||||
linux/lib/xz/xz_dec_bcj.c into your application, and use appropriate
|
||||
#defines in xz_config.h or in compiler flags. You don't need these
|
||||
#defines in the code that just uses XZ Embedded via xz.h, but having
|
||||
them always #defined doesn't hurt either.
|
||||
|
||||
#define Instruction set BCJ filter endianness
|
||||
XZ_DEC_X86 x86-32 or x86-64 Little endian only
|
||||
XZ_DEC_POWERPC PowerPC Big endian only
|
||||
XZ_DEC_IA64 Itanium (IA-64) Big or little endian
|
||||
XZ_DEC_ARM ARM Little endian only
|
||||
XZ_DEC_ARMTHUMB ARM-Thumb Little endian only
|
||||
XZ_DEC_SPARC SPARC Big or little endian
|
||||
|
||||
While some architectures are (partially) bi-endian, the endianness
|
||||
setting doesn't change the endianness of the instructions on all
|
||||
architectures. That's why Itanium and SPARC filters work for both big
|
||||
and little endian executables (Itanium has little endian instructions
|
||||
and SPARC has big endian instructions).
|
||||
|
||||
There currently is no filter for little endian PowerPC or big endian
|
||||
ARM or ARM-Thumb. Implementing filters for them can be considered if
|
||||
there is a need for such filters in real-world applications.
|
||||
|
||||
Notes about shared libraries
|
||||
|
||||
If you are including XZ Embedded into a shared library, you very
|
||||
probably should rename the xz_* functions to prevent symbol
|
||||
conflicts in case your library is linked against some other library
|
||||
or application that also has XZ Embedded in it (which may even be
|
||||
a different version of XZ Embedded). TODO: Provide an easy way
|
||||
to do this.
|
||||
|
||||
Please don't create a shared library of XZ Embedded itself unless
|
||||
it is fine to rebuild everything depending on that shared library
|
||||
everytime you upgrade to a newer version of XZ Embedded. There are
|
||||
no API or ABI stability guarantees between different versions of
|
||||
XZ Embedded.
|
||||
|
|
@ -0,0 +1,122 @@
|
|||
|
||||
XZ data compression in Linux
|
||||
============================
|
||||
|
||||
Introduction
|
||||
|
||||
XZ is a general purpose data compression format with high compression
|
||||
ratio and relatively fast decompression. The primary compression
|
||||
algorithm (filter) is LZMA2. Additional filters can be used to improve
|
||||
compression ratio even further. E.g. Branch/Call/Jump (BCJ) filters
|
||||
improve compression ratio of executable data.
|
||||
|
||||
The XZ decompressor in Linux is called XZ Embedded. It supports
|
||||
the LZMA2 filter and optionally also BCJ filters. CRC32 is supported
|
||||
for integrity checking. The home page of XZ Embedded is at
|
||||
<http://tukaani.org/xz/embedded.html>, where you can find the
|
||||
latest version and also information about using the code outside
|
||||
the Linux kernel.
|
||||
|
||||
For userspace, XZ Utils provide a zlib-like compression library
|
||||
and a gzip-like command line tool. XZ Utils can be downloaded from
|
||||
<http://tukaani.org/xz/>.
|
||||
|
||||
XZ related components in the kernel
|
||||
|
||||
The xz_dec module provides XZ decompressor with single-call (buffer
|
||||
to buffer) and multi-call (stateful) APIs. The usage of the xz_dec
|
||||
module is documented in include/linux/xz.h.
|
||||
|
||||
The xz_dec_test module is for testing xz_dec. xz_dec_test is not
|
||||
useful unless you are hacking the XZ decompressor. xz_dec_test
|
||||
allocates a char device major dynamically to which one can write
|
||||
.xz files from userspace. The decompressed output is thrown away.
|
||||
Keep an eye on dmesg to see diagnostics printed by xz_dec_test.
|
||||
See the xz_dec_test source code for the details.
|
||||
|
||||
For decompressing the kernel image, initramfs, and initrd, there
|
||||
is a wrapper function in lib/decompress_unxz.c. Its API is the
|
||||
same as in other decompress_*.c files, which is defined in
|
||||
include/linux/decompress/generic.h.
|
||||
|
||||
scripts/xz_wrap.sh is a wrapper for the xz command line tool found
|
||||
from XZ Utils. The wrapper sets compression options to values suitable
|
||||
for compressing the kernel image.
|
||||
|
||||
For kernel makefiles, two commands are provided for use with
|
||||
$(call if_needed). The kernel image should be compressed with
|
||||
$(call if_needed,xzkern) which will use a BCJ filter and a big LZMA2
|
||||
dictionary. It will also append a four-byte trailer containing the
|
||||
uncompressed size of the file, which is needed by the boot code.
|
||||
Other things should be compressed with $(call if_needed,xzmisc)
|
||||
which will use no BCJ filter and 1 MiB LZMA2 dictionary.
|
||||
|
||||
Notes on compression options
|
||||
|
||||
Since the XZ Embedded supports only streams with no integrity check or
|
||||
CRC32, make sure that you don't use some other integrity check type
|
||||
when encoding files that are supposed to be decoded by the kernel. With
|
||||
liblzma, you need to use either LZMA_CHECK_NONE or LZMA_CHECK_CRC32
|
||||
when encoding. With the xz command line tool, use --check=none or
|
||||
--check=crc32.
|
||||
|
||||
Using CRC32 is strongly recommended unless there is some other layer
|
||||
which will verify the integrity of the uncompressed data anyway.
|
||||
Double checking the integrity would probably be waste of CPU cycles.
|
||||
Note that the headers will always have a CRC32 which will be validated
|
||||
by the decoder; you can only change the integrity check type (or
|
||||
disable it) for the actual uncompressed data.
|
||||
|
||||
In userspace, LZMA2 is typically used with dictionary sizes of several
|
||||
megabytes. The decoder needs to have the dictionary in RAM, thus big
|
||||
dictionaries cannot be used for files that are intended to be decoded
|
||||
by the kernel. 1 MiB is probably the maximum reasonable dictionary
|
||||
size for in-kernel use (maybe more is OK for initramfs). The presets
|
||||
in XZ Utils may not be optimal when creating files for the kernel,
|
||||
so don't hesitate to use custom settings. Example:
|
||||
|
||||
xz --check=crc32 --lzma2=dict=512KiB inputfile
|
||||
|
||||
An exception to above dictionary size limitation is when the decoder
|
||||
is used in single-call mode. Decompressing the kernel itself is an
|
||||
example of this situation. In single-call mode, the memory usage
|
||||
doesn't depend on the dictionary size, and it is perfectly fine to
|
||||
use a big dictionary: for maximum compression, the dictionary should
|
||||
be at least as big as the uncompressed data itself.
|
||||
|
||||
Future plans
|
||||
|
||||
Creating a limited XZ encoder may be considered if people think it is
|
||||
useful. LZMA2 is slower to compress than e.g. Deflate or LZO even at
|
||||
the fastest settings, so it isn't clear if LZMA2 encoder is wanted
|
||||
into the kernel.
|
||||
|
||||
Support for limited random-access reading is planned for the
|
||||
decompression code. I don't know if it could have any use in the
|
||||
kernel, but I know that it would be useful in some embedded projects
|
||||
outside the Linux kernel.
|
||||
|
||||
Conformance to the .xz file format specification
|
||||
|
||||
There are a couple of corner cases where things have been simplified
|
||||
at expense of detecting errors as early as possible. These should not
|
||||
matter in practice all, since they don't cause security issues. But
|
||||
it is good to know this if testing the code e.g. with the test files
|
||||
from XZ Utils.
|
||||
|
||||
Reporting bugs
|
||||
|
||||
Before reporting a bug, please check that it's not fixed already
|
||||
at upstream. See <http://tukaani.org/xz/embedded.html> to get the
|
||||
latest code.
|
||||
|
||||
Report bugs to <lasse.collin@tukaani.org> or visit #tukaani on
|
||||
Freenode and talk to Larhzu. I don't actively read LKML or other
|
||||
kernel-related mailing lists, so if there's something I should know,
|
||||
you should email to me personally or use IRC.
|
||||
|
||||
Don't bother Igor Pavlov with questions about the XZ implementation
|
||||
in the kernel or about XZ Utils. While these two implementations
|
||||
include essential code that is directly based on Igor Pavlov's code,
|
||||
these implementations aren't maintained nor supported by him.
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
/*
|
||||
* Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef DECOMPRESS_UNXZ_H
|
||||
#define DECOMPRESS_UNXZ_H
|
||||
|
||||
int unxz(unsigned char *in, int in_size,
|
||||
int (*fill)(void *dest, unsigned int size),
|
||||
int (*flush)(void *src, unsigned int size),
|
||||
unsigned char *out, int *in_used,
|
||||
void (*error)(char *x));
|
||||
|
||||
#endif
|
|
@ -0,0 +1,304 @@
|
|||
/*
|
||||
* XZ decompressor
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_H
|
||||
#define XZ_H
|
||||
|
||||
#ifdef __KERNEL__
|
||||
# include <linux/stddef.h>
|
||||
# include <linux/types.h>
|
||||
#else
|
||||
# include <stddef.h>
|
||||
# include <stdint.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* In Linux, this is used to make extern functions static when needed. */
|
||||
#ifndef XZ_EXTERN
|
||||
# define XZ_EXTERN extern
|
||||
#endif
|
||||
|
||||
/**
|
||||
* enum xz_mode - Operation mode
|
||||
*
|
||||
* @XZ_SINGLE: Single-call mode. This uses less RAM than
|
||||
* than multi-call modes, because the LZMA2
|
||||
* dictionary doesn't need to be allocated as
|
||||
* part of the decoder state. All required data
|
||||
* structures are allocated at initialization,
|
||||
* so xz_dec_run() cannot return XZ_MEM_ERROR.
|
||||
* @XZ_PREALLOC: Multi-call mode with preallocated LZMA2
|
||||
* dictionary buffer. All data structures are
|
||||
* allocated at initialization, so xz_dec_run()
|
||||
* cannot return XZ_MEM_ERROR.
|
||||
* @XZ_DYNALLOC: Multi-call mode. The LZMA2 dictionary is
|
||||
* allocated once the required size has been
|
||||
* parsed from the stream headers. If the
|
||||
* allocation fails, xz_dec_run() will return
|
||||
* XZ_MEM_ERROR.
|
||||
*
|
||||
* It is possible to enable support only for a subset of the above
|
||||
* modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC,
|
||||
* or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled
|
||||
* with support for all operation modes, but the preboot code may
|
||||
* be built with fewer features to minimize code size.
|
||||
*/
|
||||
enum xz_mode {
|
||||
XZ_SINGLE,
|
||||
XZ_PREALLOC,
|
||||
XZ_DYNALLOC
|
||||
};
|
||||
|
||||
/**
|
||||
* enum xz_ret - Return codes
|
||||
* @XZ_OK: Everything is OK so far. More input or more
|
||||
* output space is required to continue. This
|
||||
* return code is possible only in multi-call mode
|
||||
* (XZ_PREALLOC or XZ_DYNALLOC).
|
||||
* @XZ_STREAM_END: Operation finished successfully.
|
||||
* @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding
|
||||
* is still possible in multi-call mode by simply
|
||||
* calling xz_dec_run() again.
|
||||
* Note that this return value is used only if
|
||||
* XZ_DEC_ANY_CHECK was defined at build time,
|
||||
* which is not used in the kernel. Unsupported
|
||||
* check types return XZ_OPTIONS_ERROR if
|
||||
* XZ_DEC_ANY_CHECK was not defined at build time.
|
||||
* @XZ_MEM_ERROR: Allocating memory failed. This return code is
|
||||
* possible only if the decoder was initialized
|
||||
* with XZ_DYNALLOC. The amount of memory that was
|
||||
* tried to be allocated was no more than the
|
||||
* dict_max argument given to xz_dec_init().
|
||||
* @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than
|
||||
* allowed by the dict_max argument given to
|
||||
* xz_dec_init(). This return value is possible
|
||||
* only in multi-call mode (XZ_PREALLOC or
|
||||
* XZ_DYNALLOC); the single-call mode (XZ_SINGLE)
|
||||
* ignores the dict_max argument.
|
||||
* @XZ_FORMAT_ERROR: File format was not recognized (wrong magic
|
||||
* bytes).
|
||||
* @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
|
||||
* compression options. In the decoder this means
|
||||
* that the header CRC32 matches, but the header
|
||||
* itself specifies something that we don't support.
|
||||
* @XZ_DATA_ERROR: Compressed data is corrupt.
|
||||
* @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
|
||||
* different between multi-call and single-call
|
||||
* mode; more information below.
|
||||
*
|
||||
* In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
|
||||
* to XZ code cannot consume any input and cannot produce any new output.
|
||||
* This happens when there is no new input available, or the output buffer
|
||||
* is full while at least one output byte is still pending. Assuming your
|
||||
* code is not buggy, you can get this error only when decoding a compressed
|
||||
* stream that is truncated or otherwise corrupt.
|
||||
*
|
||||
* In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
|
||||
* is too small or the compressed input is corrupt in a way that makes the
|
||||
* decoder produce more output than the caller expected. When it is
|
||||
* (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
|
||||
* is used instead of XZ_BUF_ERROR.
|
||||
*/
|
||||
enum xz_ret {
|
||||
XZ_OK,
|
||||
XZ_STREAM_END,
|
||||
XZ_UNSUPPORTED_CHECK,
|
||||
XZ_MEM_ERROR,
|
||||
XZ_MEMLIMIT_ERROR,
|
||||
XZ_FORMAT_ERROR,
|
||||
XZ_OPTIONS_ERROR,
|
||||
XZ_DATA_ERROR,
|
||||
XZ_BUF_ERROR
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_buf - Passing input and output buffers to XZ code
|
||||
* @in: Beginning of the input buffer. This may be NULL if and only
|
||||
* if in_pos is equal to in_size.
|
||||
* @in_pos: Current position in the input buffer. This must not exceed
|
||||
* in_size.
|
||||
* @in_size: Size of the input buffer
|
||||
* @out: Beginning of the output buffer. This may be NULL if and only
|
||||
* if out_pos is equal to out_size.
|
||||
* @out_pos: Current position in the output buffer. This must not exceed
|
||||
* out_size.
|
||||
* @out_size: Size of the output buffer
|
||||
*
|
||||
* Only the contents of the output buffer from out[out_pos] onward, and
|
||||
* the variables in_pos and out_pos are modified by the XZ code.
|
||||
*/
|
||||
struct xz_buf {
|
||||
const uint8_t *in;
|
||||
size_t in_pos;
|
||||
size_t in_size;
|
||||
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_dec - Opaque type to hold the XZ decoder state
|
||||
*/
|
||||
struct xz_dec;
|
||||
|
||||
/**
|
||||
* xz_dec_init() - Allocate and initialize a XZ decoder state
|
||||
* @mode: Operation mode
|
||||
* @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
|
||||
* multi-call decoding. This is ignored in single-call mode
|
||||
* (mode == XZ_SINGLE). LZMA2 dictionary is always 2^n bytes
|
||||
* or 2^n + 2^(n-1) bytes (the latter sizes are less common
|
||||
* in practice), so other values for dict_max don't make sense.
|
||||
* In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
|
||||
* 512 KiB, and 1 MiB are probably the only reasonable values,
|
||||
* except for kernel and initramfs images where a bigger
|
||||
* dictionary can be fine and useful.
|
||||
*
|
||||
* Single-call mode (XZ_SINGLE): xz_dec_run() decodes the whole stream at
|
||||
* once. The caller must provide enough output space or the decoding will
|
||||
* fail. The output space is used as the dictionary buffer, which is why
|
||||
* there is no need to allocate the dictionary as part of the decoder's
|
||||
* internal state.
|
||||
*
|
||||
* Because the output buffer is used as the workspace, streams encoded using
|
||||
* a big dictionary are not a problem in single-call mode. It is enough that
|
||||
* the output buffer is big enough to hold the actual uncompressed data; it
|
||||
* can be smaller than the dictionary size stored in the stream headers.
|
||||
*
|
||||
* Multi-call mode with preallocated dictionary (XZ_PREALLOC): dict_max bytes
|
||||
* of memory is preallocated for the LZMA2 dictionary. This way there is no
|
||||
* risk that xz_dec_run() could run out of memory, since xz_dec_run() will
|
||||
* never allocate any memory. Instead, if the preallocated dictionary is too
|
||||
* small for decoding the given input stream, xz_dec_run() will return
|
||||
* XZ_MEMLIMIT_ERROR. Thus, it is important to know what kind of data will be
|
||||
* decoded to avoid allocating excessive amount of memory for the dictionary.
|
||||
*
|
||||
* Multi-call mode with dynamically allocated dictionary (XZ_DYNALLOC):
|
||||
* dict_max specifies the maximum allowed dictionary size that xz_dec_run()
|
||||
* may allocate once it has parsed the dictionary size from the stream
|
||||
* headers. This way excessive allocations can be avoided while still
|
||||
* limiting the maximum memory usage to a sane value to prevent running the
|
||||
* system out of memory when decompressing streams from untrusted sources.
|
||||
*
|
||||
* On success, xz_dec_init() returns a pointer to struct xz_dec, which is
|
||||
* ready to be used with xz_dec_run(). If memory allocation fails,
|
||||
* xz_dec_init() returns NULL.
|
||||
*/
|
||||
XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max);
|
||||
|
||||
/**
|
||||
* xz_dec_run() - Run the XZ decoder
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
* @b: Input and output buffers
|
||||
*
|
||||
* The possible return values depend on build options and operation mode.
|
||||
* See enum xz_ret for details.
|
||||
*
|
||||
* Note that if an error occurs in single-call mode (return value is not
|
||||
* XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
|
||||
* contents of the output buffer from b->out[b->out_pos] onward are
|
||||
* undefined. This is true even after XZ_BUF_ERROR, because with some filter
|
||||
* chains, there may be a second pass over the output buffer, and this pass
|
||||
* cannot be properly done if the output buffer is truncated. Thus, you
|
||||
* cannot give the single-call decoder a too small buffer and then expect to
|
||||
* get that amount valid data from the beginning of the stream. You must use
|
||||
* the multi-call decoder if you don't want to uncompress the whole stream.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
|
||||
|
||||
/**
|
||||
* xz_dec_reset() - Reset an already allocated decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
*
|
||||
* This function can be used to reset the multi-call decoder state without
|
||||
* freeing and reallocating memory with xz_dec_end() and xz_dec_init().
|
||||
*
|
||||
* In single-call mode, xz_dec_reset() is always called in the beginning of
|
||||
* xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
|
||||
* multi-call mode.
|
||||
*/
|
||||
XZ_EXTERN void xz_dec_reset(struct xz_dec *s);
|
||||
|
||||
/**
|
||||
* xz_dec_end() - Free the memory allocated for the decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init(). If s is NULL,
|
||||
* this function does nothing.
|
||||
*/
|
||||
XZ_EXTERN void xz_dec_end(struct xz_dec *s);
|
||||
|
||||
/*
|
||||
* Standalone build (userspace build or in-kernel build for boot time use)
|
||||
* needs a CRC32 implementation. For normal in-kernel use, kernel's own
|
||||
* CRC32 module is used instead, and users of this module don't need to
|
||||
* care about the functions below.
|
||||
*/
|
||||
#ifndef XZ_INTERNAL_CRC32
|
||||
# ifdef __KERNEL__
|
||||
# define XZ_INTERNAL_CRC32 0
|
||||
# else
|
||||
# define XZ_INTERNAL_CRC32 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* If CRC64 support has been enabled with XZ_USE_CRC64, a CRC64
|
||||
* implementation is needed too.
|
||||
*/
|
||||
#ifndef XZ_USE_CRC64
|
||||
# undef XZ_INTERNAL_CRC64
|
||||
# define XZ_INTERNAL_CRC64 0
|
||||
#endif
|
||||
#ifndef XZ_INTERNAL_CRC64
|
||||
# ifdef __KERNEL__
|
||||
# error Using CRC64 in the kernel has not been implemented.
|
||||
# else
|
||||
# define XZ_INTERNAL_CRC64 1
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if XZ_INTERNAL_CRC32
|
||||
/*
|
||||
* This must be called before any other xz_* function to initialize
|
||||
* the CRC32 lookup table.
|
||||
*/
|
||||
XZ_EXTERN void xz_crc32_init(void);
|
||||
|
||||
/*
|
||||
* Update CRC32 value using the polynomial from IEEE-802.3. To start a new
|
||||
* calculation, the third argument must be zero. To continue the calculation,
|
||||
* the previously returned value is passed as the third argument.
|
||||
*/
|
||||
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc);
|
||||
#endif
|
||||
|
||||
#if XZ_INTERNAL_CRC64
|
||||
/*
|
||||
* This must be called before any other xz_* function (except xz_crc32_init())
|
||||
* to initialize the CRC64 lookup table.
|
||||
*/
|
||||
XZ_EXTERN void xz_crc64_init(void);
|
||||
|
||||
/*
|
||||
* Update CRC64 value using the polynomial from ECMA-182. To start a new
|
||||
* calculation, the third argument must be zero. To continue the calculation,
|
||||
* the previously returned value is passed as the third argument.
|
||||
*/
|
||||
XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,397 @@
|
|||
/*
|
||||
* Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Important notes about in-place decompression
|
||||
*
|
||||
* At least on x86, the kernel is decompressed in place: the compressed data
|
||||
* is placed to the end of the output buffer, and the decompressor overwrites
|
||||
* most of the compressed data. There must be enough safety margin to
|
||||
* guarantee that the write position is always behind the read position.
|
||||
*
|
||||
* The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below.
|
||||
* Note that the margin with XZ is bigger than with Deflate (gzip)!
|
||||
*
|
||||
* The worst case for in-place decompression is that the beginning of
|
||||
* the file is compressed extremely well, and the rest of the file is
|
||||
* uncompressible. Thus, we must look for worst-case expansion when the
|
||||
* compressor is encoding uncompressible data.
|
||||
*
|
||||
* The structure of the .xz file in case of a compresed kernel is as follows.
|
||||
* Sizes (as bytes) of the fields are in parenthesis.
|
||||
*
|
||||
* Stream Header (12)
|
||||
* Block Header:
|
||||
* Block Header (8-12)
|
||||
* Compressed Data (N)
|
||||
* Block Padding (0-3)
|
||||
* CRC32 (4)
|
||||
* Index (8-20)
|
||||
* Stream Footer (12)
|
||||
*
|
||||
* Normally there is exactly one Block, but let's assume that there are
|
||||
* 2-4 Blocks just in case. Because Stream Header and also Block Header
|
||||
* of the first Block don't make the decompressor produce any uncompressed
|
||||
* data, we can ignore them from our calculations. Block Headers of possible
|
||||
* additional Blocks have to be taken into account still. With these
|
||||
* assumptions, it is safe to assume that the total header overhead is
|
||||
* less than 128 bytes.
|
||||
*
|
||||
* Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ
|
||||
* doesn't change the size of the data, it is enough to calculate the
|
||||
* safety margin for LZMA2.
|
||||
*
|
||||
* LZMA2 stores the data in chunks. Each chunk has a header whose size is
|
||||
* a maximum of 6 bytes, but to get round 2^n numbers, let's assume that
|
||||
* the maximum chunk header size is 8 bytes. After the chunk header, there
|
||||
* may be up to 64 KiB of actual payload in the chunk. Often the payload is
|
||||
* quite a bit smaller though; to be safe, let's assume that an average
|
||||
* chunk has only 32 KiB of payload.
|
||||
*
|
||||
* The maximum uncompressed size of the payload is 2 MiB. The minimum
|
||||
* uncompressed size of the payload is in practice never less than the
|
||||
* payload size itself. The LZMA2 format would allow uncompressed size
|
||||
* to be less than the payload size, but no sane compressor creates such
|
||||
* files. LZMA2 supports storing uncompressible data in uncompressed form,
|
||||
* so there's never a need to create payloads whose uncompressed size is
|
||||
* smaller than the compressed size.
|
||||
*
|
||||
* The assumption, that the uncompressed size of the payload is never
|
||||
* smaller than the payload itself, is valid only when talking about
|
||||
* the payload as a whole. It is possible that the payload has parts where
|
||||
* the decompressor consumes more input than it produces output. Calculating
|
||||
* the worst case for this would be tricky. Instead of trying to do that,
|
||||
* let's simply make sure that the decompressor never overwrites any bytes
|
||||
* of the payload which it is currently reading.
|
||||
*
|
||||
* Now we have enough information to calculate the safety margin. We need
|
||||
* - 128 bytes for the .xz file format headers;
|
||||
* - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header
|
||||
* per chunk, each chunk having average payload size of 32 KiB); and
|
||||
* - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that
|
||||
* the decompressor never overwrites anything from the LZMA2 chunk
|
||||
* payload it is currently reading.
|
||||
*
|
||||
* We get the following formula:
|
||||
*
|
||||
* safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536
|
||||
* = 128 + (uncompressed_size >> 12) + 65536
|
||||
*
|
||||
* For comparison, according to arch/x86/boot/compressed/misc.c, the
|
||||
* equivalent formula for Deflate is this:
|
||||
*
|
||||
* safety_margin = 18 + (uncompressed_size >> 12) + 32768
|
||||
*
|
||||
* Thus, when updating Deflate-only in-place kernel decompressor to
|
||||
* support XZ, the fixed overhead has to be increased from 18+32768 bytes
|
||||
* to 128+65536 bytes.
|
||||
*/
|
||||
|
||||
/*
|
||||
* STATIC is defined to "static" if we are being built for kernel
|
||||
* decompression (pre-boot code). <linux/decompress/mm.h> will define
|
||||
* STATIC to empty if it wasn't already defined. Since we will need to
|
||||
* know later if we are being used for kernel decompression, we define
|
||||
* XZ_PREBOOT here.
|
||||
*/
|
||||
#ifdef STATIC
|
||||
# define XZ_PREBOOT
|
||||
#endif
|
||||
#ifdef __KERNEL__
|
||||
# include <linux/decompress/mm.h>
|
||||
#endif
|
||||
#define XZ_EXTERN STATIC
|
||||
|
||||
#ifndef XZ_PREBOOT
|
||||
# include <linux/slab.h>
|
||||
# include <linux/xz.h>
|
||||
#else
|
||||
/*
|
||||
* Use the internal CRC32 code instead of kernel's CRC32 module, which
|
||||
* is not available in early phase of booting.
|
||||
*/
|
||||
#define XZ_INTERNAL_CRC32 1
|
||||
|
||||
/*
|
||||
* For boot time use, we enable only the BCJ filter of the current
|
||||
* architecture or none if no BCJ filter is available for the architecture.
|
||||
*/
|
||||
#ifdef CONFIG_X86
|
||||
# define XZ_DEC_X86
|
||||
#endif
|
||||
#ifdef CONFIG_PPC
|
||||
# define XZ_DEC_POWERPC
|
||||
#endif
|
||||
#ifdef CONFIG_ARM
|
||||
# define XZ_DEC_ARM
|
||||
#endif
|
||||
#ifdef CONFIG_IA64
|
||||
# define XZ_DEC_IA64
|
||||
#endif
|
||||
#ifdef CONFIG_SPARC
|
||||
# define XZ_DEC_SPARC
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This will get the basic headers so that memeq() and others
|
||||
* can be defined.
|
||||
*/
|
||||
#include "xz/xz_private.h"
|
||||
|
||||
/*
|
||||
* Replace the normal allocation functions with the versions from
|
||||
* <linux/decompress/mm.h>. vfree() needs to support vfree(NULL)
|
||||
* when XZ_DYNALLOC is used, but the pre-boot free() doesn't support it.
|
||||
* Workaround it here because the other decompressors don't need it.
|
||||
*/
|
||||
#undef kmalloc
|
||||
#undef kfree
|
||||
#undef vmalloc
|
||||
#undef vfree
|
||||
#define kmalloc(size, flags) malloc(size)
|
||||
#define kfree(ptr) free(ptr)
|
||||
#define vmalloc(size) malloc(size)
|
||||
#define vfree(ptr) do { if (ptr != NULL) free(ptr); } while (0)
|
||||
|
||||
/*
|
||||
* FIXME: Not all basic memory functions are provided in architecture-specific
|
||||
* files (yet). We define our own versions here for now, but this should be
|
||||
* only a temporary solution.
|
||||
*
|
||||
* memeq and memzero are not used much and any remotely sane implementation
|
||||
* is fast enough. memcpy/memmove speed matters in multi-call mode, but
|
||||
* the kernel image is decompressed in single-call mode, in which only
|
||||
* memcpy speed can matter and only if there is a lot of uncompressible data
|
||||
* (LZMA2 stores uncompressible chunks in uncompressed form). Thus, the
|
||||
* functions below should just be kept small; it's probably not worth
|
||||
* optimizing for speed.
|
||||
*/
|
||||
|
||||
#ifndef memeq
|
||||
static bool memeq(const void *a, const void *b, size_t size)
|
||||
{
|
||||
const uint8_t *x = a;
|
||||
const uint8_t *y = b;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < size; ++i)
|
||||
if (x[i] != y[i])
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef memzero
|
||||
static void memzero(void *buf, size_t size)
|
||||
{
|
||||
uint8_t *b = buf;
|
||||
uint8_t *e = b + size;
|
||||
|
||||
while (b != e)
|
||||
*b++ = '\0';
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
/* Not static to avoid a conflict with the prototype in the Linux headers. */
|
||||
void *memmove(void *dest, const void *src, size_t size)
|
||||
{
|
||||
uint8_t *d = dest;
|
||||
const uint8_t *s = src;
|
||||
size_t i;
|
||||
|
||||
if (d < s) {
|
||||
for (i = 0; i < size; ++i)
|
||||
d[i] = s[i];
|
||||
} else if (d > s) {
|
||||
i = size;
|
||||
while (i-- > 0)
|
||||
d[i] = s[i];
|
||||
}
|
||||
|
||||
return dest;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Since we need memmove anyway, would use it as memcpy too.
|
||||
* Commented out for now to avoid breaking things.
|
||||
*/
|
||||
/*
|
||||
#ifndef memcpy
|
||||
# define memcpy memmove
|
||||
#endif
|
||||
*/
|
||||
|
||||
#include "xz/xz_crc32.c"
|
||||
#include "xz/xz_dec_stream.c"
|
||||
#include "xz/xz_dec_lzma2.c"
|
||||
#include "xz/xz_dec_bcj.c"
|
||||
|
||||
#endif /* XZ_PREBOOT */
|
||||
|
||||
/* Size of the input and output buffers in multi-call mode */
|
||||
#define XZ_IOBUF_SIZE 4096
|
||||
|
||||
/*
|
||||
* This function implements the API defined in <linux/decompress/generic.h>.
|
||||
*
|
||||
* This wrapper will automatically choose single-call or multi-call mode
|
||||
* of the native XZ decoder API. The single-call mode can be used only when
|
||||
* both input and output buffers are available as a single chunk, i.e. when
|
||||
* fill() and flush() won't be used.
|
||||
*/
|
||||
int INIT unxz(unsigned char *in, int in_size,
|
||||
int (*fill)(void *dest, unsigned int size),
|
||||
int (*flush)(void *src, unsigned int size),
|
||||
unsigned char *out, int *in_used,
|
||||
void (*error)(char *x))
|
||||
{
|
||||
struct xz_buf b;
|
||||
struct xz_dec *s;
|
||||
enum xz_ret ret;
|
||||
bool must_free_in = false;
|
||||
|
||||
#if XZ_INTERNAL_CRC32
|
||||
xz_crc32_init();
|
||||
#endif
|
||||
|
||||
if (in_used != NULL)
|
||||
*in_used = 0;
|
||||
|
||||
if (fill == NULL && flush == NULL)
|
||||
s = xz_dec_init(XZ_SINGLE, 0);
|
||||
else
|
||||
s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1);
|
||||
|
||||
if (s == NULL)
|
||||
goto error_alloc_state;
|
||||
|
||||
if (flush == NULL) {
|
||||
b.out = out;
|
||||
b.out_size = (size_t)-1;
|
||||
} else {
|
||||
b.out_size = XZ_IOBUF_SIZE;
|
||||
b.out = malloc(XZ_IOBUF_SIZE);
|
||||
if (b.out == NULL)
|
||||
goto error_alloc_out;
|
||||
}
|
||||
|
||||
if (in == NULL) {
|
||||
must_free_in = true;
|
||||
in = malloc(XZ_IOBUF_SIZE);
|
||||
if (in == NULL)
|
||||
goto error_alloc_in;
|
||||
}
|
||||
|
||||
b.in = in;
|
||||
b.in_pos = 0;
|
||||
b.in_size = in_size;
|
||||
b.out_pos = 0;
|
||||
|
||||
if (fill == NULL && flush == NULL) {
|
||||
ret = xz_dec_run(s, &b);
|
||||
} else {
|
||||
do {
|
||||
if (b.in_pos == b.in_size && fill != NULL) {
|
||||
if (in_used != NULL)
|
||||
*in_used += (int)(b.in_pos);
|
||||
|
||||
b.in_pos = 0;
|
||||
|
||||
in_size = fill(in, XZ_IOBUF_SIZE);
|
||||
if (in_size < 0) {
|
||||
/*
|
||||
* This isn't an optimal error code
|
||||
* but it probably isn't worth making
|
||||
* a new one either.
|
||||
*/
|
||||
ret = XZ_BUF_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
b.in_size = in_size;
|
||||
}
|
||||
|
||||
ret = xz_dec_run(s, &b);
|
||||
|
||||
if (flush != NULL && (b.out_pos == b.out_size
|
||||
|| (ret != XZ_OK && b.out_pos > 0))) {
|
||||
/*
|
||||
* Setting ret here may hide an error
|
||||
* returned by xz_dec_run(), but probably
|
||||
* it's not too bad.
|
||||
*/
|
||||
if (flush(b.out, (unsigned int)(b.out_pos)) != (int)b.out_pos)
|
||||
ret = XZ_BUF_ERROR;
|
||||
|
||||
b.out_pos = 0;
|
||||
}
|
||||
} while (ret == XZ_OK);
|
||||
|
||||
if (must_free_in)
|
||||
free(in);
|
||||
|
||||
if (flush != NULL)
|
||||
free(b.out);
|
||||
}
|
||||
|
||||
if (in_used != NULL)
|
||||
*in_used += (int)(b.in_pos);
|
||||
|
||||
xz_dec_end(s);
|
||||
|
||||
switch (ret) {
|
||||
case XZ_STREAM_END:
|
||||
return 0;
|
||||
|
||||
case XZ_MEM_ERROR:
|
||||
/* This can occur only in multi-call mode. */
|
||||
error("XZ decompressor ran out of memory");
|
||||
break;
|
||||
|
||||
case XZ_FORMAT_ERROR:
|
||||
error("Input is not in the XZ format (wrong magic bytes)");
|
||||
break;
|
||||
|
||||
case XZ_OPTIONS_ERROR:
|
||||
error("Input was encoded with settings that are not "
|
||||
"supported by this XZ decoder");
|
||||
break;
|
||||
|
||||
case XZ_DATA_ERROR:
|
||||
case XZ_BUF_ERROR:
|
||||
error("XZ-compressed data is corrupt");
|
||||
break;
|
||||
|
||||
default:
|
||||
error("Bug in the XZ decompressor");
|
||||
break;
|
||||
}
|
||||
|
||||
return -1;
|
||||
|
||||
error_alloc_in:
|
||||
if (flush != NULL)
|
||||
free(b.out);
|
||||
|
||||
error_alloc_out:
|
||||
xz_dec_end(s);
|
||||
|
||||
error_alloc_state:
|
||||
error("XZ decompressor ran out of memory");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* This macro is used by architecture-specific files to decompress
|
||||
* the kernel image.
|
||||
*/
|
||||
#define decompress unxz
|
|
@ -0,0 +1,57 @@
|
|||
config XZ_DEC
|
||||
tristate "XZ decompression support"
|
||||
select CRC32
|
||||
help
|
||||
LZMA2 compression algorithm and BCJ filters are supported using
|
||||
the .xz file format as the container. For integrity checking,
|
||||
CRC32 is supported. See Documentation/xz.txt for more information.
|
||||
|
||||
if XZ_DEC
|
||||
|
||||
config XZ_DEC_X86
|
||||
bool "x86 BCJ filter decoder"
|
||||
default y if X86
|
||||
select XZ_DEC_BCJ
|
||||
|
||||
config XZ_DEC_POWERPC
|
||||
bool "PowerPC BCJ filter decoder"
|
||||
default y if PPC
|
||||
select XZ_DEC_BCJ
|
||||
|
||||
config XZ_DEC_IA64
|
||||
bool "IA-64 BCJ filter decoder"
|
||||
default y if IA64
|
||||
select XZ_DEC_BCJ
|
||||
|
||||
config XZ_DEC_ARM
|
||||
bool "ARM BCJ filter decoder"
|
||||
default y if ARM
|
||||
select XZ_DEC_BCJ
|
||||
|
||||
config XZ_DEC_ARMTHUMB
|
||||
bool "ARM-Thumb BCJ filter decoder"
|
||||
default y if (ARM && ARM_THUMB)
|
||||
select XZ_DEC_BCJ
|
||||
|
||||
config XZ_DEC_SPARC
|
||||
bool "SPARC BCJ filter decoder"
|
||||
default y if SPARC
|
||||
select XZ_DEC_BCJ
|
||||
|
||||
endif
|
||||
|
||||
config XZ_DEC_BCJ
|
||||
bool
|
||||
default n
|
||||
|
||||
config XZ_DEC_TEST
|
||||
tristate "XZ decompressor tester"
|
||||
default n
|
||||
depends on XZ_DEC
|
||||
help
|
||||
This allows passing .xz files to the in-kernel XZ decoder via
|
||||
a character special file. It calculates CRC32 of the decompressed
|
||||
data and writes diagnostics to the system log.
|
||||
|
||||
Unless you are developing the XZ decoder, you don't need this
|
||||
and should say N.
|
|
@ -0,0 +1,5 @@
|
|||
obj-$(CONFIG_XZ_DEC) += xz_dec.o
|
||||
xz_dec-y := xz_dec_syms.o xz_dec_stream.o xz_dec_lzma2.o
|
||||
xz_dec-$(CONFIG_XZ_DEC_BCJ) += xz_dec_bcj.o
|
||||
|
||||
obj-$(CONFIG_XZ_DEC_TEST) += xz_dec_test.o
|
|
@ -0,0 +1,59 @@
|
|||
/*
|
||||
* CRC32 using the polynomial from IEEE-802.3
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is not the fastest implementation, but it is pretty compact.
|
||||
* The fastest versions of xz_crc32() on modern CPUs without hardware
|
||||
* accelerated CRC instruction are 3-5 times as fast as this version,
|
||||
* but they are bigger and use more memory for the lookup table.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
/*
|
||||
* STATIC_RW_DATA is used in the pre-boot environment on some architectures.
|
||||
* See <linux/decompress/mm.h> for details.
|
||||
*/
|
||||
#ifndef STATIC_RW_DATA
|
||||
# define STATIC_RW_DATA static
|
||||
#endif
|
||||
|
||||
STATIC_RW_DATA uint32_t xz_crc32_table[256];
|
||||
|
||||
XZ_EXTERN void xz_crc32_init(void)
|
||||
{
|
||||
const uint32_t poly = 0xEDB88320;
|
||||
|
||||
uint32_t i;
|
||||
uint32_t j;
|
||||
uint32_t r;
|
||||
|
||||
for (i = 0; i < 256; ++i) {
|
||||
r = i;
|
||||
for (j = 0; j < 8; ++j)
|
||||
r = (r >> 1) ^ (poly & ~((r & 1) - 1));
|
||||
|
||||
xz_crc32_table[i] = r;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
|
||||
{
|
||||
crc = ~crc;
|
||||
|
||||
while (size != 0) {
|
||||
crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
|
||||
--size;
|
||||
}
|
||||
|
||||
return ~crc;
|
||||
}
|
|
@ -0,0 +1,50 @@
|
|||
/*
|
||||
* CRC64 using the polynomial from ECMA-182
|
||||
*
|
||||
* This file is similar to xz_crc32.c. See the comments there.
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
#ifndef STATIC_RW_DATA
|
||||
# define STATIC_RW_DATA static
|
||||
#endif
|
||||
|
||||
STATIC_RW_DATA uint64_t xz_crc64_table[256];
|
||||
|
||||
XZ_EXTERN void xz_crc64_init(void)
|
||||
{
|
||||
const uint64_t poly = 0xC96C5795D7870F42;
|
||||
|
||||
uint32_t i;
|
||||
uint32_t j;
|
||||
uint64_t r;
|
||||
|
||||
for (i = 0; i < 256; ++i) {
|
||||
r = i;
|
||||
for (j = 0; j < 8; ++j)
|
||||
r = (r >> 1) ^ (poly & ~((r & 1) - 1));
|
||||
|
||||
xz_crc64_table[i] = r;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc)
|
||||
{
|
||||
crc = ~crc;
|
||||
|
||||
while (size != 0) {
|
||||
crc = xz_crc64_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
|
||||
--size;
|
||||
}
|
||||
|
||||
return ~crc;
|
||||
}
|
|
@ -0,0 +1,574 @@
|
|||
/*
|
||||
* Branch/Call/Jump (BCJ) filter decoders
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
/*
|
||||
* The rest of the file is inside this ifdef. It makes things a little more
|
||||
* convenient when building without support for any BCJ filters.
|
||||
*/
|
||||
#ifdef XZ_DEC_BCJ
|
||||
|
||||
struct xz_dec_bcj {
|
||||
/* Type of the BCJ filter being used */
|
||||
enum {
|
||||
BCJ_X86 = 4, /* x86 or x86-64 */
|
||||
BCJ_POWERPC = 5, /* Big endian only */
|
||||
BCJ_IA64 = 6, /* Big or little endian */
|
||||
BCJ_ARM = 7, /* Little endian only */
|
||||
BCJ_ARMTHUMB = 8, /* Little endian only */
|
||||
BCJ_SPARC = 9 /* Big or little endian */
|
||||
} type;
|
||||
|
||||
/*
|
||||
* Return value of the next filter in the chain. We need to preserve
|
||||
* this information across calls, because we must not call the next
|
||||
* filter anymore once it has returned XZ_STREAM_END.
|
||||
*/
|
||||
enum xz_ret ret;
|
||||
|
||||
/* True if we are operating in single-call mode. */
|
||||
bool single_call;
|
||||
|
||||
/*
|
||||
* Absolute position relative to the beginning of the uncompressed
|
||||
* data (in a single .xz Block). We care only about the lowest 32
|
||||
* bits so this doesn't need to be uint64_t even with big files.
|
||||
*/
|
||||
uint32_t pos;
|
||||
|
||||
/* x86 filter state */
|
||||
uint32_t x86_prev_mask;
|
||||
|
||||
/* Temporary space to hold the variables from struct xz_buf */
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
|
||||
struct {
|
||||
/* Amount of already filtered data in the beginning of buf */
|
||||
size_t filtered;
|
||||
|
||||
/* Total amount of data currently stored in buf */
|
||||
size_t size;
|
||||
|
||||
/*
|
||||
* Buffer to hold a mix of filtered and unfiltered data. This
|
||||
* needs to be big enough to hold Alignment + 2 * Look-ahead:
|
||||
*
|
||||
* Type Alignment Look-ahead
|
||||
* x86 1 4
|
||||
* PowerPC 4 0
|
||||
* IA-64 16 0
|
||||
* ARM 4 0
|
||||
* ARM-Thumb 2 2
|
||||
* SPARC 4 0
|
||||
*/
|
||||
uint8_t buf[16];
|
||||
} temp;
|
||||
};
|
||||
|
||||
#ifdef XZ_DEC_X86
|
||||
/*
|
||||
* This is used to test the most significant byte of a memory address
|
||||
* in an x86 instruction.
|
||||
*/
|
||||
static inline int bcj_x86_test_msbyte(uint8_t b)
|
||||
{
|
||||
return b == 0x00 || b == 0xFF;
|
||||
}
|
||||
|
||||
static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const bool mask_to_allowed_status[8]
|
||||
= { true, true, true, false, true, false, false, false };
|
||||
|
||||
static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
|
||||
|
||||
size_t i;
|
||||
size_t prev_pos = (size_t)-1;
|
||||
uint32_t prev_mask = s->x86_prev_mask;
|
||||
uint32_t src;
|
||||
uint32_t dest;
|
||||
uint32_t j;
|
||||
uint8_t b;
|
||||
|
||||
if (size <= 4)
|
||||
return 0;
|
||||
|
||||
size -= 4;
|
||||
for (i = 0; i < size; ++i) {
|
||||
if ((buf[i] & 0xFE) != 0xE8)
|
||||
continue;
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
if (prev_pos > 3) {
|
||||
prev_mask = 0;
|
||||
} else {
|
||||
prev_mask = (prev_mask << (prev_pos - 1)) & 7;
|
||||
if (prev_mask != 0) {
|
||||
b = buf[i + 4 - mask_to_bit_num[prev_mask]];
|
||||
if (!mask_to_allowed_status[prev_mask]
|
||||
|| bcj_x86_test_msbyte(b)) {
|
||||
prev_pos = i;
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i;
|
||||
|
||||
if (bcj_x86_test_msbyte(buf[i + 4])) {
|
||||
src = get_unaligned_le32(buf + i + 1);
|
||||
while (true) {
|
||||
dest = src - (s->pos + (uint32_t)i + 5);
|
||||
if (prev_mask == 0)
|
||||
break;
|
||||
|
||||
j = mask_to_bit_num[prev_mask] * 8;
|
||||
b = (uint8_t)(dest >> (24 - j));
|
||||
if (!bcj_x86_test_msbyte(b))
|
||||
break;
|
||||
|
||||
src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
|
||||
}
|
||||
|
||||
dest &= 0x01FFFFFF;
|
||||
dest |= (uint32_t)0 - (dest & 0x01000000);
|
||||
put_unaligned_le32(dest, buf + i + 1);
|
||||
i += 4;
|
||||
} else {
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr & 0xFC000003) == 0x48000001) {
|
||||
instr &= 0x03FFFFFC;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr &= 0x03FFFFFC;
|
||||
instr |= 0x48000001;
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_IA64
|
||||
static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const uint8_t branch_table[32] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
4, 4, 6, 6, 0, 0, 7, 7,
|
||||
4, 4, 0, 0, 4, 4, 0, 0
|
||||
};
|
||||
|
||||
/*
|
||||
* The local variables take a little bit stack space, but it's less
|
||||
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
|
||||
* stack usage here without doing that for the LZMA2 decoder too.
|
||||
*/
|
||||
|
||||
/* Loop counters */
|
||||
size_t i;
|
||||
size_t j;
|
||||
|
||||
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
|
||||
uint32_t slot;
|
||||
|
||||
/* Bitwise offset of the instruction indicated by slot */
|
||||
uint32_t bit_pos;
|
||||
|
||||
/* bit_pos split into byte and bit parts */
|
||||
uint32_t byte_pos;
|
||||
uint32_t bit_res;
|
||||
|
||||
/* Address part of an instruction */
|
||||
uint32_t addr;
|
||||
|
||||
/* Mask used to detect which instructions to convert */
|
||||
uint32_t mask;
|
||||
|
||||
/* 41-bit instruction stored somewhere in the lowest 48 bits */
|
||||
uint64_t instr;
|
||||
|
||||
/* Instruction normalized with bit_res for easier manipulation */
|
||||
uint64_t norm;
|
||||
|
||||
for (i = 0; i + 16 <= size; i += 16) {
|
||||
mask = branch_table[buf[i] & 0x1F];
|
||||
for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
|
||||
if (((mask >> slot) & 1) == 0)
|
||||
continue;
|
||||
|
||||
byte_pos = bit_pos >> 3;
|
||||
bit_res = bit_pos & 7;
|
||||
instr = 0;
|
||||
for (j = 0; j < 6; ++j)
|
||||
instr |= (uint64_t)(buf[i + j + byte_pos])
|
||||
<< (8 * j);
|
||||
|
||||
norm = instr >> bit_res;
|
||||
|
||||
if (((norm >> 37) & 0x0F) == 0x05
|
||||
&& ((norm >> 9) & 0x07) == 0) {
|
||||
addr = (norm >> 13) & 0x0FFFFF;
|
||||
addr |= ((uint32_t)(norm >> 36) & 1) << 20;
|
||||
addr <<= 4;
|
||||
addr -= s->pos + (uint32_t)i;
|
||||
addr >>= 4;
|
||||
|
||||
norm &= ~((uint64_t)0x8FFFFF << 13);
|
||||
norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
|
||||
norm |= (uint64_t)(addr & 0x100000)
|
||||
<< (36 - 20);
|
||||
|
||||
instr &= (1 << bit_res) - 1;
|
||||
instr |= norm << bit_res;
|
||||
|
||||
for (j = 0; j < 6; j++)
|
||||
buf[i + j + byte_pos]
|
||||
= (uint8_t)(instr >> (8 * j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARM
|
||||
static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
if (buf[i + 3] == 0xEB) {
|
||||
addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
|
||||
| ((uint32_t)buf[i + 2] << 16);
|
||||
addr <<= 2;
|
||||
addr -= s->pos + (uint32_t)i + 8;
|
||||
addr >>= 2;
|
||||
buf[i] = (uint8_t)addr;
|
||||
buf[i + 1] = (uint8_t)(addr >> 8);
|
||||
buf[i + 2] = (uint8_t)(addr >> 16);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 2) {
|
||||
if ((buf[i + 1] & 0xF8) == 0xF0
|
||||
&& (buf[i + 3] & 0xF8) == 0xF8) {
|
||||
addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
|
||||
| ((uint32_t)buf[i] << 11)
|
||||
| (((uint32_t)buf[i + 3] & 0x07) << 8)
|
||||
| (uint32_t)buf[i + 2];
|
||||
addr <<= 1;
|
||||
addr -= s->pos + (uint32_t)i + 4;
|
||||
addr >>= 1;
|
||||
buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
|
||||
buf[i] = (uint8_t)(addr >> 11);
|
||||
buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
|
||||
buf[i + 2] = (uint8_t)addr;
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_SPARC
|
||||
static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4) {
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
|
||||
instr <<= 2;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr >>= 2;
|
||||
instr = ((uint32_t)0x40000000 - (instr & 0x400000))
|
||||
| 0x40000000 | (instr & 0x3FFFFF);
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Apply the selected BCJ filter. Update *pos and s->pos to match the amount
|
||||
* of data that got filtered.
|
||||
*
|
||||
* NOTE: This is implemented as a switch statement to avoid using function
|
||||
* pointers, which could be problematic in the kernel boot code, which must
|
||||
* avoid pointers to static data (at least on x86).
|
||||
*/
|
||||
static void bcj_apply(struct xz_dec_bcj *s,
|
||||
uint8_t *buf, size_t *pos, size_t size)
|
||||
{
|
||||
size_t filtered;
|
||||
|
||||
buf += *pos;
|
||||
size -= *pos;
|
||||
|
||||
switch (s->type) {
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
filtered = bcj_x86(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
filtered = bcj_powerpc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
filtered = bcj_ia64(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
filtered = bcj_arm(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
filtered = bcj_armthumb(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
filtered = bcj_sparc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
/* Never reached but silence compiler warnings. */
|
||||
filtered = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
*pos += filtered;
|
||||
s->pos += filtered;
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush pending filtered data from temp to the output buffer.
|
||||
* Move the remaining mixture of possibly filtered and unfiltered
|
||||
* data to the beginning of temp.
|
||||
*/
|
||||
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size;
|
||||
|
||||
copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
|
||||
b->out_pos += copy_size;
|
||||
|
||||
s->temp.filtered -= copy_size;
|
||||
s->temp.size -= copy_size;
|
||||
memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
|
||||
}
|
||||
|
||||
/*
|
||||
* The BCJ filter functions are primitive in sense that they process the
|
||||
* data in chunks of 1-16 bytes. To hide this issue, this function does
|
||||
* some buffering.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
|
||||
struct xz_dec_lzma2 *lzma2,
|
||||
struct xz_buf *b)
|
||||
{
|
||||
size_t out_start;
|
||||
|
||||
/*
|
||||
* Flush pending already filtered data to the output buffer. Return
|
||||
* immediatelly if we couldn't flush everything, or if the next
|
||||
* filter in the chain had already returned XZ_STREAM_END.
|
||||
*/
|
||||
if (s->temp.filtered > 0) {
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we have more output space than what is currently pending in
|
||||
* temp, copy the unfiltered data from temp to the output buffer
|
||||
* and try to fill the output buffer by decoding more data from the
|
||||
* next filter in the chain. Apply the BCJ filter on the new data
|
||||
* in the output buffer. If everything cannot be filtered, copy it
|
||||
* to temp and rewind the output buffer position accordingly.
|
||||
*
|
||||
* This needs to be always run when temp.size == 0 to handle a special
|
||||
* case where the output buffer is full and the next filter has no
|
||||
* more output coming but hasn't returned XZ_STREAM_END yet.
|
||||
*/
|
||||
if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
|
||||
out_start = b->out_pos;
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
|
||||
b->out_pos += s->temp.size;
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
if (s->ret != XZ_STREAM_END
|
||||
&& (s->ret != XZ_OK || s->single_call))
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, b->out, &out_start, b->out_pos);
|
||||
|
||||
/*
|
||||
* As an exception, if the next filter returned XZ_STREAM_END,
|
||||
* we can do that too, since the last few bytes that remain
|
||||
* unfiltered are meant to remain unfiltered.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
|
||||
s->temp.size = b->out_pos - out_start;
|
||||
b->out_pos -= s->temp.size;
|
||||
memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
|
||||
|
||||
/*
|
||||
* If there wasn't enough input to the next filter to fill
|
||||
* the output buffer with unfiltered data, there's no point
|
||||
* to try decoding more data to temp.
|
||||
*/
|
||||
if (b->out_pos + s->temp.size < b->out_size)
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have unfiltered data in temp. If the output buffer isn't full
|
||||
* yet, try to fill the temp buffer by decoding more data from the
|
||||
* next filter. Apply the BCJ filter on temp. Then we hopefully can
|
||||
* fill the actual output buffer by copying filtered data from temp.
|
||||
* A mix of filtered and unfiltered data may be left in temp; it will
|
||||
* be taken care on the next call to this function.
|
||||
*/
|
||||
if (b->out_pos < b->out_size) {
|
||||
/* Make b->out{,_pos,_size} temporarily point to s->temp. */
|
||||
s->out = b->out;
|
||||
s->out_pos = b->out_pos;
|
||||
s->out_size = b->out_size;
|
||||
b->out = s->temp.buf;
|
||||
b->out_pos = s->temp.size;
|
||||
b->out_size = sizeof(s->temp.buf);
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
|
||||
s->temp.size = b->out_pos;
|
||||
b->out = s->out;
|
||||
b->out_pos = s->out_pos;
|
||||
b->out_size = s->out_size;
|
||||
|
||||
if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
|
||||
|
||||
/*
|
||||
* If the next filter returned XZ_STREAM_END, we mark that
|
||||
* everything is filtered, since the last unfiltered bytes
|
||||
* of the stream are meant to be left as is.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
s->temp.filtered = s->temp.size;
|
||||
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
return s->ret;
|
||||
}
|
||||
|
||||
XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call)
|
||||
{
|
||||
struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
if (s != NULL)
|
||||
s->single_call = single_call;
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
|
||||
{
|
||||
switch (id) {
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Unsupported Filter ID */
|
||||
return XZ_OPTIONS_ERROR;
|
||||
}
|
||||
|
||||
s->type = id;
|
||||
s->ret = XZ_OK;
|
||||
s->pos = 0;
|
||||
s->x86_prev_mask = 0;
|
||||
s->temp.filtered = 0;
|
||||
s->temp.size = 0;
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,847 @@
|
|||
/*
|
||||
* .xz Stream decoder
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
#include "xz_stream.h"
|
||||
|
||||
#ifdef XZ_USE_CRC64
|
||||
# define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64)
|
||||
#else
|
||||
# define IS_CRC64(check_type) false
|
||||
#endif
|
||||
|
||||
/* Hash used to validate the Index field */
|
||||
struct xz_dec_hash {
|
||||
vli_type unpadded;
|
||||
vli_type uncompressed;
|
||||
uint32_t crc32;
|
||||
};
|
||||
|
||||
struct xz_dec {
|
||||
/* Position in dec_main() */
|
||||
enum {
|
||||
SEQ_STREAM_HEADER,
|
||||
SEQ_BLOCK_START,
|
||||
SEQ_BLOCK_HEADER,
|
||||
SEQ_BLOCK_UNCOMPRESS,
|
||||
SEQ_BLOCK_PADDING,
|
||||
SEQ_BLOCK_CHECK,
|
||||
SEQ_INDEX,
|
||||
SEQ_INDEX_PADDING,
|
||||
SEQ_INDEX_CRC32,
|
||||
SEQ_STREAM_FOOTER
|
||||
} sequence;
|
||||
|
||||
/* Position in variable-length integers and Check fields */
|
||||
uint32_t pos;
|
||||
|
||||
/* Variable-length integer decoded by dec_vli() */
|
||||
vli_type vli;
|
||||
|
||||
/* Saved in_pos and out_pos */
|
||||
size_t in_start;
|
||||
size_t out_start;
|
||||
|
||||
#ifdef XZ_USE_CRC64
|
||||
/* CRC32 or CRC64 value in Block or CRC32 value in Index */
|
||||
uint64_t crc;
|
||||
#else
|
||||
/* CRC32 value in Block or Index */
|
||||
uint32_t crc;
|
||||
#endif
|
||||
|
||||
/* Type of the integrity check calculated from uncompressed data */
|
||||
enum xz_check check_type;
|
||||
|
||||
/* Operation mode */
|
||||
enum xz_mode mode;
|
||||
|
||||
/*
|
||||
* True if the next call to xz_dec_run() is allowed to return
|
||||
* XZ_BUF_ERROR.
|
||||
*/
|
||||
bool allow_buf_error;
|
||||
|
||||
/* Information stored in Block Header */
|
||||
struct {
|
||||
/*
|
||||
* Value stored in the Compressed Size field, or
|
||||
* VLI_UNKNOWN if Compressed Size is not present.
|
||||
*/
|
||||
vli_type compressed;
|
||||
|
||||
/*
|
||||
* Value stored in the Uncompressed Size field, or
|
||||
* VLI_UNKNOWN if Uncompressed Size is not present.
|
||||
*/
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Size of the Block Header field */
|
||||
uint32_t size;
|
||||
} block_header;
|
||||
|
||||
/* Information collected when decoding Blocks */
|
||||
struct {
|
||||
/* Observed compressed size of the current Block */
|
||||
vli_type compressed;
|
||||
|
||||
/* Observed uncompressed size of the current Block */
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Number of Blocks decoded so far */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Block sizes. This is used to
|
||||
* validate the Index field.
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} block;
|
||||
|
||||
/* Variables needed when verifying the Index field */
|
||||
struct {
|
||||
/* Position in dec_index() */
|
||||
enum {
|
||||
SEQ_INDEX_COUNT,
|
||||
SEQ_INDEX_UNPADDED,
|
||||
SEQ_INDEX_UNCOMPRESSED
|
||||
} sequence;
|
||||
|
||||
/* Size of the Index in bytes */
|
||||
vli_type size;
|
||||
|
||||
/* Number of Records (matches block.count in valid files) */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Records (matches block.hash in
|
||||
* valid files).
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} index;
|
||||
|
||||
/*
|
||||
* Temporary buffer needed to hold Stream Header, Block Header,
|
||||
* and Stream Footer. The Block Header is the biggest (1 KiB)
|
||||
* so we reserve space according to that. buf[] has to be aligned
|
||||
* to a multiple of four bytes; the size_t variables before it
|
||||
* should guarantee this.
|
||||
*/
|
||||
struct {
|
||||
size_t pos;
|
||||
size_t size;
|
||||
uint8_t buf[1024];
|
||||
} temp;
|
||||
|
||||
struct xz_dec_lzma2 *lzma2;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
struct xz_dec_bcj *bcj;
|
||||
bool bcj_active;
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
/* Sizes of the Check field with different Check IDs */
|
||||
static const uint8_t check_sizes[16] = {
|
||||
0,
|
||||
4, 4, 4,
|
||||
8, 8, 8,
|
||||
16, 16, 16,
|
||||
32, 32, 32,
|
||||
64, 64, 64
|
||||
};
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
|
||||
* must have set s->temp.pos to indicate how much data we are supposed
|
||||
* to copy into s->temp.buf. Return true once s->temp.pos has reached
|
||||
* s->temp.size.
|
||||
*/
|
||||
static bool fill_temp(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size = min_t(size_t,
|
||||
b->in_size - b->in_pos, s->temp.size - s->temp.pos);
|
||||
|
||||
memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
|
||||
b->in_pos += copy_size;
|
||||
s->temp.pos += copy_size;
|
||||
|
||||
if (s->temp.pos == s->temp.size) {
|
||||
s->temp.pos = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Decode a variable-length integer (little-endian base-128 encoding) */
|
||||
static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
|
||||
size_t *in_pos, size_t in_size)
|
||||
{
|
||||
uint8_t byte;
|
||||
|
||||
if (s->pos == 0)
|
||||
s->vli = 0;
|
||||
|
||||
while (*in_pos < in_size) {
|
||||
byte = in[*in_pos];
|
||||
++*in_pos;
|
||||
|
||||
s->vli |= (vli_type)(byte & 0x7F) << s->pos;
|
||||
|
||||
if ((byte & 0x80) == 0) {
|
||||
/* Don't allow non-minimal encodings. */
|
||||
if (byte == 0 && s->pos != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->pos = 0;
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
s->pos += 7;
|
||||
if (s->pos == 7 * VLI_BYTES_MAX)
|
||||
return XZ_DATA_ERROR;
|
||||
}
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode the Compressed Data field from a Block. Update and validate
|
||||
* the observed compressed and uncompressed sizes of the Block so that
|
||||
* they don't exceed the values possibly stored in the Block Header
|
||||
* (validation assumes that no integer overflow occurs, since vli_type
|
||||
* is normally uint64_t). Update the CRC32 or CRC64 value if presence of
|
||||
* the CRC32 or CRC64 field was indicated in Stream Header.
|
||||
*
|
||||
* Once the decoding is finished, validate that the observed sizes match
|
||||
* the sizes possibly stored in the Block Header. Update the hash and
|
||||
* Block count, which are later used to validate the Index field.
|
||||
*/
|
||||
static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
s->in_start = b->in_pos;
|
||||
s->out_start = b->out_pos;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
if (s->bcj_active)
|
||||
ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
|
||||
else
|
||||
#endif
|
||||
ret = xz_dec_lzma2_run(s->lzma2, b);
|
||||
|
||||
s->block.compressed += b->in_pos - s->in_start;
|
||||
s->block.uncompressed += b->out_pos - s->out_start;
|
||||
|
||||
/*
|
||||
* There is no need to separately check for VLI_UNKNOWN, since
|
||||
* the observed sizes are always smaller than VLI_UNKNOWN.
|
||||
*/
|
||||
if (s->block.compressed > s->block_header.compressed
|
||||
|| s->block.uncompressed
|
||||
> s->block_header.uncompressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->check_type == XZ_CHECK_CRC32)
|
||||
s->crc = xz_crc32(b->out + s->out_start,
|
||||
b->out_pos - s->out_start, s->crc);
|
||||
#ifdef XZ_USE_CRC64
|
||||
else if (s->check_type == XZ_CHECK_CRC64)
|
||||
s->crc = xz_crc64(b->out + s->out_start,
|
||||
b->out_pos - s->out_start, s->crc);
|
||||
#endif
|
||||
|
||||
if (ret == XZ_STREAM_END) {
|
||||
if (s->block_header.compressed != VLI_UNKNOWN
|
||||
&& s->block_header.compressed
|
||||
!= s->block.compressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->block_header.uncompressed != VLI_UNKNOWN
|
||||
&& s->block_header.uncompressed
|
||||
!= s->block.uncompressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block.hash.unpadded += s->block_header.size
|
||||
+ s->block.compressed;
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
s->block.hash.unpadded += check_sizes[s->check_type];
|
||||
#else
|
||||
if (s->check_type == XZ_CHECK_CRC32)
|
||||
s->block.hash.unpadded += 4;
|
||||
else if (IS_CRC64(s->check_type))
|
||||
s->block.hash.unpadded += 8;
|
||||
#endif
|
||||
|
||||
s->block.hash.uncompressed += s->block.uncompressed;
|
||||
s->block.hash.crc32 = xz_crc32(
|
||||
(const uint8_t *)&s->block.hash,
|
||||
sizeof(s->block.hash), s->block.hash.crc32);
|
||||
|
||||
++s->block.count;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Update the Index size and the CRC32 value. */
|
||||
static void index_update(struct xz_dec *s, const struct xz_buf *b)
|
||||
{
|
||||
size_t in_used = b->in_pos - s->in_start;
|
||||
s->index.size += in_used;
|
||||
s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode the Number of Records, Unpadded Size, and Uncompressed Size
|
||||
* fields from the Index field. That is, Index Padding and CRC32 are not
|
||||
* decoded by this function.
|
||||
*
|
||||
* This can return XZ_OK (more input needed), XZ_STREAM_END (everything
|
||||
* successfully decoded), or XZ_DATA_ERROR (input is corrupt).
|
||||
*/
|
||||
static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
do {
|
||||
ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
|
||||
if (ret != XZ_STREAM_END) {
|
||||
index_update(s, b);
|
||||
return ret;
|
||||
}
|
||||
|
||||
switch (s->index.sequence) {
|
||||
case SEQ_INDEX_COUNT:
|
||||
s->index.count = s->vli;
|
||||
|
||||
/*
|
||||
* Validate that the Number of Records field
|
||||
* indicates the same number of Records as
|
||||
* there were Blocks in the Stream.
|
||||
*/
|
||||
if (s->index.count != s->block.count)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->index.sequence = SEQ_INDEX_UNPADDED;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX_UNPADDED:
|
||||
s->index.hash.unpadded += s->vli;
|
||||
s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX_UNCOMPRESSED:
|
||||
s->index.hash.uncompressed += s->vli;
|
||||
s->index.hash.crc32 = xz_crc32(
|
||||
(const uint8_t *)&s->index.hash,
|
||||
sizeof(s->index.hash),
|
||||
s->index.hash.crc32);
|
||||
--s->index.count;
|
||||
s->index.sequence = SEQ_INDEX_UNPADDED;
|
||||
break;
|
||||
}
|
||||
} while (s->index.count > 0);
|
||||
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/*
|
||||
* Validate that the next four or eight input bytes match the value
|
||||
* of s->crc. s->pos must be zero when starting to validate the first byte.
|
||||
* The "bits" argument allows using the same code for both CRC32 and CRC64.
|
||||
*/
|
||||
static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
|
||||
uint32_t bits)
|
||||
{
|
||||
do {
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->pos += 8;
|
||||
|
||||
} while (s->pos < bits);
|
||||
|
||||
s->crc = 0;
|
||||
s->pos = 0;
|
||||
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
/*
|
||||
* Skip over the Check field when the Check ID is not supported.
|
||||
* Returns true once the whole Check field has been skipped over.
|
||||
*/
|
||||
static bool check_skip(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
while (s->pos < check_sizes[s->check_type]) {
|
||||
if (b->in_pos == b->in_size)
|
||||
return false;
|
||||
|
||||
++b->in_pos;
|
||||
++s->pos;
|
||||
}
|
||||
|
||||
s->pos = 0;
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
|
||||
static enum xz_ret dec_stream_header(struct xz_dec *s)
|
||||
{
|
||||
if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
|
||||
return XZ_FORMAT_ERROR;
|
||||
|
||||
if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
|
||||
!= get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/*
|
||||
* Of integrity checks, we support none (Check ID = 0),
|
||||
* CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
|
||||
* However, if XZ_DEC_ANY_CHECK is defined, we will accept other
|
||||
* check types too, but then the check won't be verified and
|
||||
* a warning (XZ_UNSUPPORTED_CHECK) will be given.
|
||||
*/
|
||||
s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
if (s->check_type > XZ_CHECK_MAX)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
|
||||
return XZ_UNSUPPORTED_CHECK;
|
||||
#else
|
||||
if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
|
||||
return XZ_OPTIONS_ERROR;
|
||||
#endif
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
|
||||
static enum xz_ret dec_stream_footer(struct xz_dec *s)
|
||||
{
|
||||
if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/*
|
||||
* Validate Backward Size. Note that we never added the size of the
|
||||
* Index CRC32 field to s->index.size, thus we use s->index.size / 4
|
||||
* instead of s->index.size / 4 - 1.
|
||||
*/
|
||||
if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/*
|
||||
* Use XZ_STREAM_END instead of XZ_OK to be more convenient
|
||||
* for the caller.
|
||||
*/
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/* Decode the Block Header and initialize the filter chain. */
|
||||
static enum xz_ret dec_block_header(struct xz_dec *s)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
/*
|
||||
* Validate the CRC32. We know that the temp buffer is at least
|
||||
* eight bytes so this is safe.
|
||||
*/
|
||||
s->temp.size -= 4;
|
||||
if (xz_crc32(s->temp.buf, s->temp.size, 0)
|
||||
!= get_le32(s->temp.buf + s->temp.size))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->temp.pos = 2;
|
||||
|
||||
/*
|
||||
* Catch unsupported Block Flags. We support only one or two filters
|
||||
* in the chain, so we catch that with the same test.
|
||||
*/
|
||||
#ifdef XZ_DEC_BCJ
|
||||
if (s->temp.buf[1] & 0x3E)
|
||||
#else
|
||||
if (s->temp.buf[1] & 0x3F)
|
||||
#endif
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Compressed Size */
|
||||
if (s->temp.buf[1] & 0x40) {
|
||||
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
|
||||
!= XZ_STREAM_END)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block_header.compressed = s->vli;
|
||||
} else {
|
||||
s->block_header.compressed = VLI_UNKNOWN;
|
||||
}
|
||||
|
||||
/* Uncompressed Size */
|
||||
if (s->temp.buf[1] & 0x80) {
|
||||
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
|
||||
!= XZ_STREAM_END)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block_header.uncompressed = s->vli;
|
||||
} else {
|
||||
s->block_header.uncompressed = VLI_UNKNOWN;
|
||||
}
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
/* If there are two filters, the first one must be a BCJ filter. */
|
||||
s->bcj_active = s->temp.buf[1] & 0x01;
|
||||
if (s->bcj_active) {
|
||||
if (s->temp.size - s->temp.pos < 2)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* We don't support custom start offset,
|
||||
* so Size of Properties must be zero.
|
||||
*/
|
||||
if (s->temp.buf[s->temp.pos++] != 0x00)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Valid Filter Flags always take at least two bytes. */
|
||||
if (s->temp.size - s->temp.pos < 2)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/* Filter ID = LZMA2 */
|
||||
if (s->temp.buf[s->temp.pos++] != 0x21)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Size of Properties = 1-byte Filter Properties */
|
||||
if (s->temp.buf[s->temp.pos++] != 0x01)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Filter Properties contains LZMA2 dictionary size. */
|
||||
if (s->temp.size - s->temp.pos < 1)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
/* The rest must be Header Padding. */
|
||||
while (s->temp.pos < s->temp.size)
|
||||
if (s->temp.buf[s->temp.pos++] != 0x00)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
s->temp.pos = 0;
|
||||
s->block.compressed = 0;
|
||||
s->block.uncompressed = 0;
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
/*
|
||||
* Store the start position for the case when we are in the middle
|
||||
* of the Index field.
|
||||
*/
|
||||
s->in_start = b->in_pos;
|
||||
|
||||
while (true) {
|
||||
switch (s->sequence) {
|
||||
case SEQ_STREAM_HEADER:
|
||||
/*
|
||||
* Stream Header is copied to s->temp, and then
|
||||
* decoded from there. This way if the caller
|
||||
* gives us only little input at a time, we can
|
||||
* still keep the Stream Header decoding code
|
||||
* simple. Similar approach is used in many places
|
||||
* in this file.
|
||||
*/
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
/*
|
||||
* If dec_stream_header() returns
|
||||
* XZ_UNSUPPORTED_CHECK, it is still possible
|
||||
* to continue decoding if working in multi-call
|
||||
* mode. Thus, update s->sequence before calling
|
||||
* dec_stream_header().
|
||||
*/
|
||||
s->sequence = SEQ_BLOCK_START;
|
||||
|
||||
ret = dec_stream_header(s);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
case SEQ_BLOCK_START:
|
||||
/* We need one byte of input to continue. */
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
/* See if this is the beginning of the Index field. */
|
||||
if (b->in[b->in_pos] == 0) {
|
||||
s->in_start = b->in_pos++;
|
||||
s->sequence = SEQ_INDEX;
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the size of the Block Header and
|
||||
* prepare to decode it.
|
||||
*/
|
||||
s->block_header.size
|
||||
= ((uint32_t)b->in[b->in_pos] + 1) * 4;
|
||||
|
||||
s->temp.size = s->block_header.size;
|
||||
s->temp.pos = 0;
|
||||
s->sequence = SEQ_BLOCK_HEADER;
|
||||
|
||||
case SEQ_BLOCK_HEADER:
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
ret = dec_block_header(s);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_BLOCK_UNCOMPRESS;
|
||||
|
||||
case SEQ_BLOCK_UNCOMPRESS:
|
||||
ret = dec_block(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_BLOCK_PADDING;
|
||||
|
||||
case SEQ_BLOCK_PADDING:
|
||||
/*
|
||||
* Size of Compressed Data + Block Padding
|
||||
* must be a multiple of four. We don't need
|
||||
* s->block.compressed for anything else
|
||||
* anymore, so we use it here to test the size
|
||||
* of the Block Padding field.
|
||||
*/
|
||||
while (s->block.compressed & 3) {
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
if (b->in[b->in_pos++] != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
++s->block.compressed;
|
||||
}
|
||||
|
||||
s->sequence = SEQ_BLOCK_CHECK;
|
||||
|
||||
case SEQ_BLOCK_CHECK:
|
||||
if (s->check_type == XZ_CHECK_CRC32) {
|
||||
ret = crc_validate(s, b, 32);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
}
|
||||
else if (IS_CRC64(s->check_type)) {
|
||||
ret = crc_validate(s, b, 64);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
}
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
else if (!check_skip(s, b)) {
|
||||
return XZ_OK;
|
||||
}
|
||||
#endif
|
||||
|
||||
s->sequence = SEQ_BLOCK_START;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX:
|
||||
ret = dec_index(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_INDEX_PADDING;
|
||||
|
||||
case SEQ_INDEX_PADDING:
|
||||
while ((s->index.size + (b->in_pos - s->in_start))
|
||||
& 3) {
|
||||
if (b->in_pos == b->in_size) {
|
||||
index_update(s, b);
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
if (b->in[b->in_pos++] != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
}
|
||||
|
||||
/* Finish the CRC32 value and Index size. */
|
||||
index_update(s, b);
|
||||
|
||||
/* Compare the hashes to validate the Index field. */
|
||||
if (!memeq(&s->block.hash, &s->index.hash,
|
||||
sizeof(s->block.hash)))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->sequence = SEQ_INDEX_CRC32;
|
||||
|
||||
case SEQ_INDEX_CRC32:
|
||||
ret = crc_validate(s, b, 32);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->temp.size = STREAM_HEADER_SIZE;
|
||||
s->sequence = SEQ_STREAM_FOOTER;
|
||||
|
||||
case SEQ_STREAM_FOOTER:
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
return dec_stream_footer(s);
|
||||
}
|
||||
}
|
||||
|
||||
/* Never reached */
|
||||
}
|
||||
|
||||
/*
|
||||
* xz_dec_run() is a wrapper for dec_main() to handle some special cases in
|
||||
* multi-call and single-call decoding.
|
||||
*
|
||||
* In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
|
||||
* are not going to make any progress anymore. This is to prevent the caller
|
||||
* from calling us infinitely when the input file is truncated or otherwise
|
||||
* corrupt. Since zlib-style API allows that the caller fills the input buffer
|
||||
* only when the decoder doesn't produce any new output, we have to be careful
|
||||
* to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
|
||||
* after the second consecutive call to xz_dec_run() that makes no progress.
|
||||
*
|
||||
* In single-call mode, if we couldn't decode everything and no error
|
||||
* occurred, either the input is truncated or the output buffer is too small.
|
||||
* Since we know that the last input byte never produces any output, we know
|
||||
* that if all the input was consumed and decoding wasn't finished, the file
|
||||
* must be corrupt. Otherwise the output buffer has to be too small or the
|
||||
* file is corrupt in a way that decoding it produces too big output.
|
||||
*
|
||||
* If single-call decoding fails, we reset b->in_pos and b->out_pos back to
|
||||
* their original values. This is because with some filter chains there won't
|
||||
* be any valid uncompressed data in the output buffer unless the decoding
|
||||
* actually succeeds (that's the price to pay of using the output buffer as
|
||||
* the workspace).
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
size_t in_start;
|
||||
size_t out_start;
|
||||
enum xz_ret ret;
|
||||
|
||||
if (DEC_IS_SINGLE(s->mode))
|
||||
xz_dec_reset(s);
|
||||
|
||||
in_start = b->in_pos;
|
||||
out_start = b->out_pos;
|
||||
ret = dec_main(s, b);
|
||||
|
||||
if (DEC_IS_SINGLE(s->mode)) {
|
||||
if (ret == XZ_OK)
|
||||
ret = b->in_pos == b->in_size
|
||||
? XZ_DATA_ERROR : XZ_BUF_ERROR;
|
||||
|
||||
if (ret != XZ_STREAM_END) {
|
||||
b->in_pos = in_start;
|
||||
b->out_pos = out_start;
|
||||
}
|
||||
|
||||
} else if (ret == XZ_OK && in_start == b->in_pos
|
||||
&& out_start == b->out_pos) {
|
||||
if (s->allow_buf_error)
|
||||
ret = XZ_BUF_ERROR;
|
||||
|
||||
s->allow_buf_error = true;
|
||||
} else {
|
||||
s->allow_buf_error = false;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max)
|
||||
{
|
||||
struct xz_dec *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
if (s == NULL)
|
||||
return NULL;
|
||||
|
||||
s->mode = mode;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
|
||||
if (s->bcj == NULL)
|
||||
goto error_bcj;
|
||||
#endif
|
||||
|
||||
s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
|
||||
if (s->lzma2 == NULL)
|
||||
goto error_lzma2;
|
||||
|
||||
xz_dec_reset(s);
|
||||
return s;
|
||||
|
||||
error_lzma2:
|
||||
#ifdef XZ_DEC_BCJ
|
||||
xz_dec_bcj_end(s->bcj);
|
||||
error_bcj:
|
||||
#endif
|
||||
kfree(s);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
XZ_EXTERN void xz_dec_reset(struct xz_dec *s)
|
||||
{
|
||||
s->sequence = SEQ_STREAM_HEADER;
|
||||
s->allow_buf_error = false;
|
||||
s->pos = 0;
|
||||
s->crc = 0;
|
||||
memzero(&s->block, sizeof(s->block));
|
||||
memzero(&s->index, sizeof(s->index));
|
||||
s->temp.pos = 0;
|
||||
s->temp.size = STREAM_HEADER_SIZE;
|
||||
}
|
||||
|
||||
XZ_EXTERN void xz_dec_end(struct xz_dec *s)
|
||||
{
|
||||
if (s != NULL) {
|
||||
xz_dec_lzma2_end(s->lzma2);
|
||||
#ifdef XZ_DEC_BCJ
|
||||
xz_dec_bcj_end(s->bcj);
|
||||
#endif
|
||||
kfree(s);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,26 @@
|
|||
/*
|
||||
* XZ decoder module information
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/xz.h>
|
||||
|
||||
EXPORT_SYMBOL(xz_dec_init);
|
||||
EXPORT_SYMBOL(xz_dec_reset);
|
||||
EXPORT_SYMBOL(xz_dec_run);
|
||||
EXPORT_SYMBOL(xz_dec_end);
|
||||
|
||||
MODULE_DESCRIPTION("XZ decompressor");
|
||||
MODULE_VERSION("1.0");
|
||||
MODULE_AUTHOR("Lasse Collin <lasse.collin@tukaani.org> and Igor Pavlov");
|
||||
|
||||
/*
|
||||
* This code is in the public domain, but in Linux it's simplest to just
|
||||
* say it's GPL and consider the authors as the copyright holders.
|
||||
*/
|
||||
MODULE_LICENSE("GPL");
|
|
@ -0,0 +1,220 @@
|
|||
/*
|
||||
* XZ decoder tester
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/crc32.h>
|
||||
#include <linux/xz.h>
|
||||
|
||||
/* Maximum supported dictionary size */
|
||||
#define DICT_MAX (1 << 20)
|
||||
|
||||
/* Device name to pass to register_chrdev(). */
|
||||
#define DEVICE_NAME "xz_dec_test"
|
||||
|
||||
/* Dynamically allocated device major number */
|
||||
static int device_major;
|
||||
|
||||
/*
|
||||
* We reuse the same decoder state, and thus can decode only one
|
||||
* file at a time.
|
||||
*/
|
||||
static bool device_is_open;
|
||||
|
||||
/* XZ decoder state */
|
||||
static struct xz_dec *state;
|
||||
|
||||
/*
|
||||
* Return value of xz_dec_run(). We need to avoid calling xz_dec_run() after
|
||||
* it has returned XZ_STREAM_END, so we make this static.
|
||||
*/
|
||||
static enum xz_ret ret;
|
||||
|
||||
/*
|
||||
* Input and output buffers. The input buffer is used as a temporary safe
|
||||
* place for the data coming from the userspace.
|
||||
*/
|
||||
static uint8_t buffer_in[1024];
|
||||
static uint8_t buffer_out[1024];
|
||||
|
||||
/*
|
||||
* Structure to pass the input and output buffers to the XZ decoder.
|
||||
* A few of the fields are never modified so we initialize them here.
|
||||
*/
|
||||
static struct xz_buf buffers = {
|
||||
.in = buffer_in,
|
||||
.out = buffer_out,
|
||||
.out_size = sizeof(buffer_out)
|
||||
};
|
||||
|
||||
/*
|
||||
* CRC32 of uncompressed data. This is used to give the user a simple way
|
||||
* to check that the decoder produces correct output.
|
||||
*/
|
||||
static uint32_t crc;
|
||||
|
||||
static int xz_dec_test_open(struct inode *i, struct file *f)
|
||||
{
|
||||
if (device_is_open)
|
||||
return -EBUSY;
|
||||
|
||||
device_is_open = true;
|
||||
|
||||
xz_dec_reset(state);
|
||||
ret = XZ_OK;
|
||||
crc = 0xFFFFFFFF;
|
||||
|
||||
buffers.in_pos = 0;
|
||||
buffers.in_size = 0;
|
||||
buffers.out_pos = 0;
|
||||
|
||||
printk(KERN_INFO DEVICE_NAME ": opened\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int xz_dec_test_release(struct inode *i, struct file *f)
|
||||
{
|
||||
device_is_open = false;
|
||||
|
||||
if (ret == XZ_OK)
|
||||
printk(KERN_INFO DEVICE_NAME ": input was truncated\n");
|
||||
|
||||
printk(KERN_INFO DEVICE_NAME ": closed\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode the data given to us from the userspace. CRC32 of the uncompressed
|
||||
* data is calculated and is printed at the end of successful decoding. The
|
||||
* uncompressed data isn't stored anywhere for further use.
|
||||
*
|
||||
* The .xz file must have exactly one Stream and no Stream Padding. The data
|
||||
* after the first Stream is considered to be garbage.
|
||||
*/
|
||||
static ssize_t xz_dec_test_write(struct file *file, const char __user *buf,
|
||||
size_t size, loff_t *pos)
|
||||
{
|
||||
size_t remaining;
|
||||
|
||||
if (ret != XZ_OK) {
|
||||
if (size > 0)
|
||||
printk(KERN_INFO DEVICE_NAME ": %zu bytes of "
|
||||
"garbage at the end of the file\n",
|
||||
size);
|
||||
|
||||
return -ENOSPC;
|
||||
}
|
||||
|
||||
printk(KERN_INFO DEVICE_NAME ": decoding %zu bytes of input\n",
|
||||
size);
|
||||
|
||||
remaining = size;
|
||||
while ((remaining > 0 || buffers.out_pos == buffers.out_size)
|
||||
&& ret == XZ_OK) {
|
||||
if (buffers.in_pos == buffers.in_size) {
|
||||
buffers.in_pos = 0;
|
||||
buffers.in_size = min(remaining, sizeof(buffer_in));
|
||||
if (copy_from_user(buffer_in, buf, buffers.in_size))
|
||||
return -EFAULT;
|
||||
|
||||
buf += buffers.in_size;
|
||||
remaining -= buffers.in_size;
|
||||
}
|
||||
|
||||
buffers.out_pos = 0;
|
||||
ret = xz_dec_run(state, &buffers);
|
||||
crc = crc32(crc, buffer_out, buffers.out_pos);
|
||||
}
|
||||
|
||||
switch (ret) {
|
||||
case XZ_OK:
|
||||
printk(KERN_INFO DEVICE_NAME ": XZ_OK\n");
|
||||
return size;
|
||||
|
||||
case XZ_STREAM_END:
|
||||
printk(KERN_INFO DEVICE_NAME ": XZ_STREAM_END, "
|
||||
"CRC32 = 0x%08X\n", ~crc);
|
||||
return size - remaining - (buffers.in_size - buffers.in_pos);
|
||||
|
||||
case XZ_MEMLIMIT_ERROR:
|
||||
printk(KERN_INFO DEVICE_NAME ": XZ_MEMLIMIT_ERROR\n");
|
||||
break;
|
||||
|
||||
case XZ_FORMAT_ERROR:
|
||||
printk(KERN_INFO DEVICE_NAME ": XZ_FORMAT_ERROR\n");
|
||||
break;
|
||||
|
||||
case XZ_OPTIONS_ERROR:
|
||||
printk(KERN_INFO DEVICE_NAME ": XZ_OPTIONS_ERROR\n");
|
||||
break;
|
||||
|
||||
case XZ_DATA_ERROR:
|
||||
printk(KERN_INFO DEVICE_NAME ": XZ_DATA_ERROR\n");
|
||||
break;
|
||||
|
||||
case XZ_BUF_ERROR:
|
||||
printk(KERN_INFO DEVICE_NAME ": XZ_BUF_ERROR\n");
|
||||
break;
|
||||
|
||||
default:
|
||||
printk(KERN_INFO DEVICE_NAME ": Bug detected!\n");
|
||||
break;
|
||||
}
|
||||
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
/* Allocate the XZ decoder state and register the character device. */
|
||||
static int __init xz_dec_test_init(void)
|
||||
{
|
||||
static const struct file_operations fileops = {
|
||||
.owner = THIS_MODULE,
|
||||
.open = &xz_dec_test_open,
|
||||
.release = &xz_dec_test_release,
|
||||
.write = &xz_dec_test_write
|
||||
};
|
||||
|
||||
state = xz_dec_init(XZ_PREALLOC, DICT_MAX);
|
||||
if (state == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
device_major = register_chrdev(0, DEVICE_NAME, &fileops);
|
||||
if (device_major < 0) {
|
||||
xz_dec_end(state);
|
||||
return device_major;
|
||||
}
|
||||
|
||||
printk(KERN_INFO DEVICE_NAME ": module loaded\n");
|
||||
printk(KERN_INFO DEVICE_NAME ": Create a device node with "
|
||||
"'mknod " DEVICE_NAME " c %d 0' and write .xz files "
|
||||
"to it.\n", device_major);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit xz_dec_test_exit(void)
|
||||
{
|
||||
unregister_chrdev(device_major, DEVICE_NAME);
|
||||
xz_dec_end(state);
|
||||
printk(KERN_INFO DEVICE_NAME ": module unloaded\n");
|
||||
}
|
||||
|
||||
module_init(xz_dec_test_init);
|
||||
module_exit(xz_dec_test_exit);
|
||||
|
||||
MODULE_DESCRIPTION("XZ decompressor tester");
|
||||
MODULE_VERSION("1.0");
|
||||
MODULE_AUTHOR("Lasse Collin <lasse.collin@tukaani.org>");
|
||||
|
||||
/*
|
||||
* This code is in the public domain, but in Linux it's simplest to just
|
||||
* say it's GPL and consider the authors as the copyright holders.
|
||||
*/
|
||||
MODULE_LICENSE("GPL");
|
|
@ -0,0 +1,204 @@
|
|||
/*
|
||||
* LZMA2 definitions
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_LZMA2_H
|
||||
#define XZ_LZMA2_H
|
||||
|
||||
/* Range coder constants */
|
||||
#define RC_SHIFT_BITS 8
|
||||
#define RC_TOP_BITS 24
|
||||
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
|
||||
#define RC_BIT_MODEL_TOTAL_BITS 11
|
||||
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
|
||||
#define RC_MOVE_BITS 5
|
||||
|
||||
/*
|
||||
* Maximum number of position states. A position state is the lowest pb
|
||||
* number of bits of the current uncompressed offset. In some places there
|
||||
* are different sets of probabilities for different position states.
|
||||
*/
|
||||
#define POS_STATES_MAX (1 << 4)
|
||||
|
||||
/*
|
||||
* This enum is used to track which LZMA symbols have occurred most recently
|
||||
* and in which order. This information is used to predict the next symbol.
|
||||
*
|
||||
* Symbols:
|
||||
* - Literal: One 8-bit byte
|
||||
* - Match: Repeat a chunk of data at some distance
|
||||
* - Long repeat: Multi-byte match at a recently seen distance
|
||||
* - Short repeat: One-byte repeat at a recently seen distance
|
||||
*
|
||||
* The symbol names are in from STATE_oldest_older_previous. REP means
|
||||
* either short or long repeated match, and NONLIT means any non-literal.
|
||||
*/
|
||||
enum lzma_state {
|
||||
STATE_LIT_LIT,
|
||||
STATE_MATCH_LIT_LIT,
|
||||
STATE_REP_LIT_LIT,
|
||||
STATE_SHORTREP_LIT_LIT,
|
||||
STATE_MATCH_LIT,
|
||||
STATE_REP_LIT,
|
||||
STATE_SHORTREP_LIT,
|
||||
STATE_LIT_MATCH,
|
||||
STATE_LIT_LONGREP,
|
||||
STATE_LIT_SHORTREP,
|
||||
STATE_NONLIT_MATCH,
|
||||
STATE_NONLIT_REP
|
||||
};
|
||||
|
||||
/* Total number of states */
|
||||
#define STATES 12
|
||||
|
||||
/* The lowest 7 states indicate that the previous state was a literal. */
|
||||
#define LIT_STATES 7
|
||||
|
||||
/* Indicate that the latest symbol was a literal. */
|
||||
static inline void lzma_state_literal(enum lzma_state *state)
|
||||
{
|
||||
if (*state <= STATE_SHORTREP_LIT_LIT)
|
||||
*state = STATE_LIT_LIT;
|
||||
else if (*state <= STATE_LIT_SHORTREP)
|
||||
*state -= 3;
|
||||
else
|
||||
*state -= 6;
|
||||
}
|
||||
|
||||
/* Indicate that the latest symbol was a match. */
|
||||
static inline void lzma_state_match(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
|
||||
}
|
||||
|
||||
/* Indicate that the latest state was a long repeated match. */
|
||||
static inline void lzma_state_long_rep(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
|
||||
}
|
||||
|
||||
/* Indicate that the latest symbol was a short match. */
|
||||
static inline void lzma_state_short_rep(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
|
||||
}
|
||||
|
||||
/* Test if the previous symbol was a literal. */
|
||||
static inline bool lzma_state_is_literal(enum lzma_state state)
|
||||
{
|
||||
return state < LIT_STATES;
|
||||
}
|
||||
|
||||
/* Each literal coder is divided in three sections:
|
||||
* - 0x001-0x0FF: Without match byte
|
||||
* - 0x101-0x1FF: With match byte; match bit is 0
|
||||
* - 0x201-0x2FF: With match byte; match bit is 1
|
||||
*
|
||||
* Match byte is used when the previous LZMA symbol was something else than
|
||||
* a literal (that is, it was some kind of match).
|
||||
*/
|
||||
#define LITERAL_CODER_SIZE 0x300
|
||||
|
||||
/* Maximum number of literal coders */
|
||||
#define LITERAL_CODERS_MAX (1 << 4)
|
||||
|
||||
/* Minimum length of a match is two bytes. */
|
||||
#define MATCH_LEN_MIN 2
|
||||
|
||||
/* Match length is encoded with 4, 5, or 10 bits.
|
||||
*
|
||||
* Length Bits
|
||||
* 2-9 4 = Choice=0 + 3 bits
|
||||
* 10-17 5 = Choice=1 + Choice2=0 + 3 bits
|
||||
* 18-273 10 = Choice=1 + Choice2=1 + 8 bits
|
||||
*/
|
||||
#define LEN_LOW_BITS 3
|
||||
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
|
||||
#define LEN_MID_BITS 3
|
||||
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
|
||||
#define LEN_HIGH_BITS 8
|
||||
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
|
||||
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
|
||||
|
||||
/*
|
||||
* Maximum length of a match is 273 which is a result of the encoding
|
||||
* described above.
|
||||
*/
|
||||
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
|
||||
|
||||
/*
|
||||
* Different sets of probabilities are used for match distances that have
|
||||
* very short match length: Lengths of 2, 3, and 4 bytes have a separate
|
||||
* set of probabilities for each length. The matches with longer length
|
||||
* use a shared set of probabilities.
|
||||
*/
|
||||
#define DIST_STATES 4
|
||||
|
||||
/*
|
||||
* Get the index of the appropriate probability array for decoding
|
||||
* the distance slot.
|
||||
*/
|
||||
static inline uint32_t lzma_get_dist_state(uint32_t len)
|
||||
{
|
||||
return len < DIST_STATES + MATCH_LEN_MIN
|
||||
? len - MATCH_LEN_MIN : DIST_STATES - 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The highest two bits of a 32-bit match distance are encoded using six bits.
|
||||
* This six-bit value is called a distance slot. This way encoding a 32-bit
|
||||
* value takes 6-36 bits, larger values taking more bits.
|
||||
*/
|
||||
#define DIST_SLOT_BITS 6
|
||||
#define DIST_SLOTS (1 << DIST_SLOT_BITS)
|
||||
|
||||
/* Match distances up to 127 are fully encoded using probabilities. Since
|
||||
* the highest two bits (distance slot) are always encoded using six bits,
|
||||
* the distances 0-3 don't need any additional bits to encode, since the
|
||||
* distance slot itself is the same as the actual distance. DIST_MODEL_START
|
||||
* indicates the first distance slot where at least one additional bit is
|
||||
* needed.
|
||||
*/
|
||||
#define DIST_MODEL_START 4
|
||||
|
||||
/*
|
||||
* Match distances greater than 127 are encoded in three pieces:
|
||||
* - distance slot: the highest two bits
|
||||
* - direct bits: 2-26 bits below the highest two bits
|
||||
* - alignment bits: four lowest bits
|
||||
*
|
||||
* Direct bits don't use any probabilities.
|
||||
*
|
||||
* The distance slot value of 14 is for distances 128-191.
|
||||
*/
|
||||
#define DIST_MODEL_END 14
|
||||
|
||||
/* Distance slots that indicate a distance <= 127. */
|
||||
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
|
||||
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
|
||||
|
||||
/*
|
||||
* For match distances greater than 127, only the highest two bits and the
|
||||
* lowest four bits (alignment) is encoded using probabilities.
|
||||
*/
|
||||
#define ALIGN_BITS 4
|
||||
#define ALIGN_SIZE (1 << ALIGN_BITS)
|
||||
#define ALIGN_MASK (ALIGN_SIZE - 1)
|
||||
|
||||
/* Total number of all probability variables */
|
||||
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
|
||||
|
||||
/*
|
||||
* LZMA remembers the four most recent match distances. Reusing these
|
||||
* distances tends to take less space than re-encoding the actual
|
||||
* distance value.
|
||||
*/
|
||||
#define REPS 4
|
||||
|
||||
#endif
|
|
@ -0,0 +1,156 @@
|
|||
/*
|
||||
* Private includes and definitions
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_PRIVATE_H
|
||||
#define XZ_PRIVATE_H
|
||||
|
||||
#ifdef __KERNEL__
|
||||
# include <linux/xz.h>
|
||||
# include <linux/kernel.h>
|
||||
# include <asm/unaligned.h>
|
||||
/* XZ_PREBOOT may be defined only via decompress_unxz.c. */
|
||||
# ifndef XZ_PREBOOT
|
||||
# include <linux/slab.h>
|
||||
# include <linux/vmalloc.h>
|
||||
# include <linux/string.h>
|
||||
# ifdef CONFIG_XZ_DEC_X86
|
||||
# define XZ_DEC_X86
|
||||
# endif
|
||||
# ifdef CONFIG_XZ_DEC_POWERPC
|
||||
# define XZ_DEC_POWERPC
|
||||
# endif
|
||||
# ifdef CONFIG_XZ_DEC_IA64
|
||||
# define XZ_DEC_IA64
|
||||
# endif
|
||||
# ifdef CONFIG_XZ_DEC_ARM
|
||||
# define XZ_DEC_ARM
|
||||
# endif
|
||||
# ifdef CONFIG_XZ_DEC_ARMTHUMB
|
||||
# define XZ_DEC_ARMTHUMB
|
||||
# endif
|
||||
# ifdef CONFIG_XZ_DEC_SPARC
|
||||
# define XZ_DEC_SPARC
|
||||
# endif
|
||||
# define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
||||
# define memzero(buf, size) memset(buf, 0, size)
|
||||
# endif
|
||||
# define get_le32(p) le32_to_cpup((const uint32_t *)(p))
|
||||
#else
|
||||
/*
|
||||
* For userspace builds, use a separate header to define the required
|
||||
* macros and functions. This makes it easier to adapt the code into
|
||||
* different environments and avoids clutter in the Linux kernel tree.
|
||||
*/
|
||||
# include "xz_config.h"
|
||||
#endif
|
||||
|
||||
/* If no specific decoding mode is requested, enable support for all modes. */
|
||||
#if !defined(XZ_DEC_SINGLE) && !defined(XZ_DEC_PREALLOC) \
|
||||
&& !defined(XZ_DEC_DYNALLOC)
|
||||
# define XZ_DEC_SINGLE
|
||||
# define XZ_DEC_PREALLOC
|
||||
# define XZ_DEC_DYNALLOC
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The DEC_IS_foo(mode) macros are used in "if" statements. If only some
|
||||
* of the supported modes are enabled, these macros will evaluate to true or
|
||||
* false at compile time and thus allow the compiler to omit unneeded code.
|
||||
*/
|
||||
#ifdef XZ_DEC_SINGLE
|
||||
# define DEC_IS_SINGLE(mode) ((mode) == XZ_SINGLE)
|
||||
#else
|
||||
# define DEC_IS_SINGLE(mode) (false)
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_PREALLOC
|
||||
# define DEC_IS_PREALLOC(mode) ((mode) == XZ_PREALLOC)
|
||||
#else
|
||||
# define DEC_IS_PREALLOC(mode) (false)
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_DYNALLOC
|
||||
# define DEC_IS_DYNALLOC(mode) ((mode) == XZ_DYNALLOC)
|
||||
#else
|
||||
# define DEC_IS_DYNALLOC(mode) (false)
|
||||
#endif
|
||||
|
||||
#if !defined(XZ_DEC_SINGLE)
|
||||
# define DEC_IS_MULTI(mode) (true)
|
||||
#elif defined(XZ_DEC_PREALLOC) || defined(XZ_DEC_DYNALLOC)
|
||||
# define DEC_IS_MULTI(mode) ((mode) != XZ_SINGLE)
|
||||
#else
|
||||
# define DEC_IS_MULTI(mode) (false)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
|
||||
* XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
|
||||
*/
|
||||
#ifndef XZ_DEC_BCJ
|
||||
# if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
|
||||
|| defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
|
||||
|| defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
|
||||
|| defined(XZ_DEC_SPARC)
|
||||
# define XZ_DEC_BCJ
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
|
||||
* before calling xz_dec_lzma2_run().
|
||||
*/
|
||||
XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
|
||||
uint32_t dict_max);
|
||||
|
||||
/*
|
||||
* Decode the LZMA2 properties (one byte) and reset the decoder. Return
|
||||
* XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
|
||||
* big enough, and XZ_OPTIONS_ERROR if props indicates something that this
|
||||
* decoder doesn't support.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
|
||||
uint8_t props);
|
||||
|
||||
/* Decode raw LZMA2 stream from b->in to b->out. */
|
||||
XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
|
||||
struct xz_buf *b);
|
||||
|
||||
/* Free the memory allocated for the LZMA2 decoder. */
|
||||
XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
/*
|
||||
* Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
|
||||
* calling xz_dec_bcj_run().
|
||||
*/
|
||||
XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call);
|
||||
|
||||
/*
|
||||
* Decode the Filter ID of a BCJ filter. This implementation doesn't
|
||||
* support custom start offsets, so no decoding of Filter Properties
|
||||
* is needed. Returns XZ_OK if the given Filter ID is supported.
|
||||
* Otherwise XZ_OPTIONS_ERROR is returned.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
|
||||
|
||||
/*
|
||||
* Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
|
||||
* a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
|
||||
* must be called directly.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
|
||||
struct xz_dec_lzma2 *lzma2,
|
||||
struct xz_buf *b);
|
||||
|
||||
/* Free the memory allocated for the BCJ filters. */
|
||||
#define xz_dec_bcj_end(s) kfree(s)
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,62 @@
|
|||
/*
|
||||
* Definitions for handling the .xz file format
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_STREAM_H
|
||||
#define XZ_STREAM_H
|
||||
|
||||
#if defined(__KERNEL__) && !XZ_INTERNAL_CRC32
|
||||
# include <linux/crc32.h>
|
||||
# undef crc32
|
||||
# define xz_crc32(buf, size, crc) \
|
||||
(~crc32_le(~(uint32_t)(crc), buf, size))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* See the .xz file format specification at
|
||||
* http://tukaani.org/xz/xz-file-format.txt
|
||||
* to understand the container format.
|
||||
*/
|
||||
|
||||
#define STREAM_HEADER_SIZE 12
|
||||
|
||||
#define HEADER_MAGIC "\3757zXZ"
|
||||
#define HEADER_MAGIC_SIZE 6
|
||||
|
||||
#define FOOTER_MAGIC "YZ"
|
||||
#define FOOTER_MAGIC_SIZE 2
|
||||
|
||||
/*
|
||||
* Variable-length integer can hold a 63-bit unsigned integer or a special
|
||||
* value indicating that the value is unknown.
|
||||
*
|
||||
* Experimental: vli_type can be defined to uint32_t to save a few bytes
|
||||
* in code size (no effect on speed). Doing so limits the uncompressed and
|
||||
* compressed size of the file to less than 256 MiB and may also weaken
|
||||
* error detection slightly.
|
||||
*/
|
||||
typedef uint64_t vli_type;
|
||||
|
||||
#define VLI_MAX ((vli_type)-1 / 2)
|
||||
#define VLI_UNKNOWN ((vli_type)-1)
|
||||
|
||||
/* Maximum encoded size of a VLI */
|
||||
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
|
||||
|
||||
/* Integrity Check types */
|
||||
enum xz_check {
|
||||
XZ_CHECK_NONE = 0,
|
||||
XZ_CHECK_CRC32 = 1,
|
||||
XZ_CHECK_CRC64 = 4,
|
||||
XZ_CHECK_SHA256 = 10
|
||||
};
|
||||
|
||||
/* Maximum possible Check ID */
|
||||
#define XZ_CHECK_MAX 15
|
||||
|
||||
#endif
|
|
@ -0,0 +1,23 @@
|
|||
#!/bin/sh
|
||||
#
|
||||
# This is a wrapper for xz to compress the kernel image using appropriate
|
||||
# compression options depending on the architecture.
|
||||
#
|
||||
# Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
#
|
||||
# This file has been put into the public domain.
|
||||
# You can do whatever you want with this file.
|
||||
#
|
||||
|
||||
BCJ=
|
||||
LZMA2OPTS=
|
||||
|
||||
case $SRCARCH in
|
||||
x86) BCJ=--x86 ;;
|
||||
powerpc) BCJ=--powerpc ;;
|
||||
ia64) BCJ=--ia64; LZMA2OPTS=pb=4 ;;
|
||||
arm) BCJ=--arm ;;
|
||||
sparc) BCJ=--sparc ;;
|
||||
esac
|
||||
|
||||
exec xz --check=crc32 $BCJ --lzma2=$LZMA2OPTS,dict=32MiB
|
|
@ -0,0 +1,48 @@
|
|||
#
|
||||
# Makefile
|
||||
#
|
||||
# Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
#
|
||||
# This file has been put into the public domain.
|
||||
# You can do whatever you want with this file.
|
||||
#
|
||||
|
||||
CC = gcc -std=gnu89
|
||||
BCJ_CPPFLAGS = -DXZ_DEC_X86 -DXZ_DEC_POWERPC -DXZ_DEC_IA64 \
|
||||
-DXZ_DEC_ARM -DXZ_DEC_ARMTHUMB -DXZ_DEC_SPARC
|
||||
CPPFLAGS = -DXZ_USE_CRC64 -DXZ_DEC_ANY_CHECK
|
||||
CFLAGS = -ggdb3 -O2 -pedantic -Wall -Wextra
|
||||
RM = rm -f
|
||||
VPATH = ../linux/include/linux ../linux/lib/xz
|
||||
COMMON_SRCS = xz_crc32.c xz_crc64.c xz_dec_stream.c xz_dec_lzma2.c xz_dec_bcj.c
|
||||
COMMON_OBJS = $(COMMON_SRCS:.c=.o)
|
||||
XZMINIDEC_OBJS = xzminidec.o
|
||||
BYTETEST_OBJS = bytetest.o
|
||||
BUFTEST_OBJS = buftest.o
|
||||
BOOTTEST_OBJS = boottest.o
|
||||
XZ_HEADERS = xz.h xz_private.h xz_stream.h xz_lzma2.h xz_config.h
|
||||
PROGRAMS = xzminidec bytetest buftest boottest
|
||||
|
||||
ALL_CPPFLAGS = -I../linux/include/linux -I. $(BCJ_CPPFLAGS) $(CPPFLAGS)
|
||||
|
||||
all: $(PROGRAMS)
|
||||
|
||||
%.o: %.c $(XZ_HEADERS)
|
||||
$(CC) $(ALL_CPPFLAGS) $(CFLAGS) -c -o $@ $<
|
||||
|
||||
xzminidec: $(COMMON_OBJS) $(XZMINIDEC_OBJS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $(COMMON_OBJS) $(XZMINIDEC_OBJS)
|
||||
|
||||
bytetest: $(COMMON_OBJS) $(BYTETEST_OBJS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $(COMMON_OBJS) $(BYTETEST_OBJS)
|
||||
|
||||
buftest: $(COMMON_OBJS) $(BUFTEST_OBJS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $(COMMON_OBJS) $(BUFTEST_OBJS)
|
||||
|
||||
boottest: $(BOOTTEST_OBJS) $(COMMON_SRCS)
|
||||
$(CC) $(ALL_CPPFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $(BOOTTEST_OBJS)
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
-$(RM) $(COMMON_OBJS) $(XZMINIDEC_OBJS) $(BUFTEST_OBJS) \
|
||||
$(BOOTTEST_OBJS) $(PROGRAMS)
|
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
* Test application for xz_boot.c
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define STATIC static
|
||||
#define INIT
|
||||
|
||||
static void error(/*const*/ char *msg)
|
||||
{
|
||||
fprintf(stderr, "%s\n", msg);
|
||||
}
|
||||
|
||||
/* Disable the CRC64 support even if it was enabled in the Makefile. */
|
||||
#undef XZ_USE_CRC64
|
||||
|
||||
#include "../linux/lib/decompress_unxz.c"
|
||||
|
||||
static uint8_t in[1024 * 1024];
|
||||
static uint8_t out[1024 * 1024];
|
||||
|
||||
static int fill(void *buf, unsigned int size)
|
||||
{
|
||||
return fread(buf, 1, size, stdin);
|
||||
}
|
||||
|
||||
static int flush(/*const*/ void *buf, unsigned int size)
|
||||
{
|
||||
return fwrite(buf, 1, size, stdout);
|
||||
}
|
||||
|
||||
static void test_buf_to_buf(void)
|
||||
{
|
||||
size_t in_size;
|
||||
int ret;
|
||||
in_size = fread(in, 1, sizeof(in), stdin);
|
||||
ret = decompress(in, in_size, NULL, NULL, out, NULL, &error);
|
||||
/* fwrite(out, 1, FIXME, stdout); */
|
||||
fprintf(stderr, "ret = %d\n", ret);
|
||||
}
|
||||
|
||||
static void test_buf_to_cb(void)
|
||||
{
|
||||
size_t in_size;
|
||||
int in_used;
|
||||
int ret;
|
||||
in_size = fread(in, 1, sizeof(in), stdin);
|
||||
ret = decompress(in, in_size, NULL, &flush, NULL, &in_used, &error);
|
||||
fprintf(stderr, "ret = %d; in_used = %d\n", ret, in_used);
|
||||
}
|
||||
|
||||
static void test_cb_to_cb(void)
|
||||
{
|
||||
int ret;
|
||||
ret = decompress(NULL, 0, &fill, &flush, NULL, NULL, &error);
|
||||
fprintf(stderr, "ret = %d\n", ret);
|
||||
}
|
||||
|
||||
/*
|
||||
* Not used by Linux <= 2.6.37-rc4 and newer probably won't use it either,
|
||||
* but this kind of use case is still required to be supported by the API.
|
||||
*/
|
||||
static void test_cb_to_buf(void)
|
||||
{
|
||||
int in_used;
|
||||
int ret;
|
||||
ret = decompress(in, 0, &fill, NULL, out, &in_used, &error);
|
||||
/* fwrite(out, 1, FIXME, stdout); */
|
||||
fprintf(stderr, "ret = %d; in_used = %d\n", ret, in_used);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
if (argc != 2)
|
||||
fprintf(stderr, "Usage: %s [bb|bc|cc|cb]\n", argv[0]);
|
||||
else if (strcmp(argv[1], "bb") == 0)
|
||||
test_buf_to_buf();
|
||||
else if (strcmp(argv[1], "bc") == 0)
|
||||
test_buf_to_cb();
|
||||
else if (strcmp(argv[1], "cc") == 0)
|
||||
test_cb_to_cb();
|
||||
else if (strcmp(argv[1], "cb") == 0)
|
||||
test_cb_to_buf();
|
||||
else
|
||||
fprintf(stderr, "Usage: %s [bb|bc|cc|cb]\n", argv[0]);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
/*
|
||||
* Test application to test buffer-to-buffer decoding
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "xz.h"
|
||||
|
||||
#define BUFFER_SIZE (1024 * 1024)
|
||||
|
||||
static uint8_t in[BUFFER_SIZE];
|
||||
static uint8_t out[BUFFER_SIZE];
|
||||
|
||||
int main(void)
|
||||
{
|
||||
struct xz_buf b;
|
||||
struct xz_dec *s;
|
||||
enum xz_ret ret;
|
||||
|
||||
xz_crc32_init();
|
||||
|
||||
s = xz_dec_init(XZ_SINGLE, 0);
|
||||
if (s == NULL) {
|
||||
fputs("Initialization failed", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
b.in = in;
|
||||
b.in_pos = 0;
|
||||
b.in_size = fread(in, 1, sizeof(in), stdin);
|
||||
b.out = out;
|
||||
b.out_pos = 0;
|
||||
b.out_size = sizeof(out);
|
||||
|
||||
ret = xz_dec_run(s, &b);
|
||||
xz_dec_end(s);
|
||||
|
||||
fwrite(out, 1, b.out_pos, stdout);
|
||||
fprintf(stderr, "%d\n", ret);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,135 @@
|
|||
/*
|
||||
* Lazy test for the case when the output size is known
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "xz.h"
|
||||
|
||||
static uint8_t in[1];
|
||||
static uint8_t out[BUFSIZ];
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
struct xz_buf b;
|
||||
struct xz_dec *s;
|
||||
enum xz_ret ret;
|
||||
const char *msg;
|
||||
size_t uncomp_size;
|
||||
|
||||
if (argc != 2) {
|
||||
fputs("Give uncompressed size as the argument", stderr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
uncomp_size = atoi(argv[1]);
|
||||
|
||||
xz_crc32_init();
|
||||
|
||||
/*
|
||||
* Support up to 64 MiB dictionary. The actually needed memory
|
||||
* is allocated once the headers have been parsed.
|
||||
*/
|
||||
s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
|
||||
if (s == NULL) {
|
||||
msg = "Memory allocation failed\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
b.in = in;
|
||||
b.in_pos = 0;
|
||||
b.in_size = 0;
|
||||
b.out = out;
|
||||
b.out_pos = 0;
|
||||
b.out_size = uncomp_size < BUFSIZ ? uncomp_size : BUFSIZ;
|
||||
|
||||
while (true) {
|
||||
if (b.in_pos == b.in_size) {
|
||||
b.in_size = fread(in, 1, sizeof(in), stdin);
|
||||
b.in_pos = 0;
|
||||
}
|
||||
|
||||
ret = xz_dec_run(s, &b);
|
||||
|
||||
if (b.out_pos == sizeof(out)) {
|
||||
if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
|
||||
msg = "Write error\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
uncomp_size -= b.out_pos;
|
||||
b.out_pos = 0;
|
||||
b.out_size = uncomp_size < BUFSIZ
|
||||
? uncomp_size : BUFSIZ;
|
||||
}
|
||||
|
||||
if (ret == XZ_OK)
|
||||
continue;
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
if (ret == XZ_UNSUPPORTED_CHECK) {
|
||||
fputs(argv[0], stderr);
|
||||
fputs(": ", stderr);
|
||||
fputs("Unsupported check; not verifying "
|
||||
"file integrity\n", stderr);
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (uncomp_size != b.out_pos) {
|
||||
msg = "Uncompressed size doesn't match\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos
|
||||
|| fclose(stdout)) {
|
||||
msg = "Write error\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
switch (ret) {
|
||||
case XZ_STREAM_END:
|
||||
xz_dec_end(s);
|
||||
return 0;
|
||||
|
||||
case XZ_MEM_ERROR:
|
||||
msg = "Memory allocation failed\n";
|
||||
goto error;
|
||||
|
||||
case XZ_MEMLIMIT_ERROR:
|
||||
msg = "Memory usage limit reached\n";
|
||||
goto error;
|
||||
|
||||
case XZ_FORMAT_ERROR:
|
||||
msg = "Not a .xz file\n";
|
||||
goto error;
|
||||
|
||||
case XZ_OPTIONS_ERROR:
|
||||
msg = "Unsupported options in the .xz headers\n";
|
||||
goto error;
|
||||
|
||||
case XZ_DATA_ERROR:
|
||||
case XZ_BUF_ERROR:
|
||||
msg = "File is corrupt\n";
|
||||
goto error;
|
||||
|
||||
default:
|
||||
msg = "Bug!\n";
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
|
||||
error:
|
||||
xz_dec_end(s);
|
||||
fputs(argv[0], stderr);
|
||||
fputs(": ", stderr);
|
||||
fputs(msg, stderr);
|
||||
return 1;
|
||||
}
|
|
@ -0,0 +1,124 @@
|
|||
/*
|
||||
* Private includes and definitions for userspace use of XZ Embedded
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_CONFIG_H
|
||||
#define XZ_CONFIG_H
|
||||
|
||||
/* Uncomment to enable CRC64 support. */
|
||||
/* #define XZ_USE_CRC64 */
|
||||
|
||||
/* Uncomment as needed to enable BCJ filter decoders. */
|
||||
/* #define XZ_DEC_X86 */
|
||||
/* #define XZ_DEC_POWERPC */
|
||||
/* #define XZ_DEC_IA64 */
|
||||
/* #define XZ_DEC_ARM */
|
||||
/* #define XZ_DEC_ARMTHUMB */
|
||||
/* #define XZ_DEC_SPARC */
|
||||
|
||||
/*
|
||||
* MSVC doesn't support modern C but XZ Embedded is mostly C89
|
||||
* so these are enough.
|
||||
*/
|
||||
#ifdef _MSC_VER
|
||||
typedef unsigned char bool;
|
||||
# define true 1
|
||||
# define false 0
|
||||
# define inline __inline
|
||||
#else
|
||||
# include <stdbool.h>
|
||||
#endif
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "xz.h"
|
||||
|
||||
#define kmalloc(size, flags) malloc(size)
|
||||
#define kfree(ptr) free(ptr)
|
||||
#define vmalloc(size) malloc(size)
|
||||
#define vfree(ptr) free(ptr)
|
||||
|
||||
#define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
||||
#define memzero(buf, size) memset(buf, 0, size)
|
||||
|
||||
#ifndef min
|
||||
# define min(x, y) ((x) < (y) ? (x) : (y))
|
||||
#endif
|
||||
#define min_t(type, x, y) min(x, y)
|
||||
|
||||
/*
|
||||
* Some functions have been marked with __always_inline to keep the
|
||||
* performance reasonable even when the compiler is optimizing for
|
||||
* small code size. You may be able to save a few bytes by #defining
|
||||
* __always_inline to plain inline, but don't complain if the code
|
||||
* becomes slow.
|
||||
*
|
||||
* NOTE: System headers on GNU/Linux may #define this macro already,
|
||||
* so if you want to change it, you need to #undef it first.
|
||||
*/
|
||||
#ifndef __always_inline
|
||||
# ifdef __GNUC__
|
||||
# define __always_inline \
|
||||
inline __attribute__((__always_inline__))
|
||||
# else
|
||||
# define __always_inline inline
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Inline functions to access unaligned unsigned 32-bit integers */
|
||||
#ifndef get_unaligned_le32
|
||||
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)buf[0]
|
||||
| ((uint32_t)buf[1] << 8)
|
||||
| ((uint32_t)buf[2] << 16)
|
||||
| ((uint32_t)buf[3] << 24);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef get_unaligned_be32
|
||||
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)(buf[0] << 24)
|
||||
| ((uint32_t)buf[1] << 16)
|
||||
| ((uint32_t)buf[2] << 8)
|
||||
| (uint32_t)buf[3];
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef put_unaligned_le32
|
||||
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)val;
|
||||
buf[1] = (uint8_t)(val >> 8);
|
||||
buf[2] = (uint8_t)(val >> 16);
|
||||
buf[3] = (uint8_t)(val >> 24);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef put_unaligned_be32
|
||||
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)(val >> 24);
|
||||
buf[1] = (uint8_t)(val >> 16);
|
||||
buf[2] = (uint8_t)(val >> 8);
|
||||
buf[3] = (uint8_t)val;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Use get_unaligned_le32() also for aligned access for simplicity. On
|
||||
* little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
|
||||
* could save a few bytes in code size.
|
||||
*/
|
||||
#ifndef get_le32
|
||||
# define get_le32 get_unaligned_le32
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,135 @@
|
|||
/*
|
||||
* Simple XZ decoder command line tool
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is really limited: Not all filters from .xz format are supported,
|
||||
* only CRC32 is supported as the integrity check, and decoding of
|
||||
* concatenated .xz streams is not supported. Thus, you may want to look
|
||||
* at xzdec from XZ Utils if a few KiB bigger tool is not a problem.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "xz.h"
|
||||
|
||||
static uint8_t in[BUFSIZ];
|
||||
static uint8_t out[BUFSIZ];
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
struct xz_buf b;
|
||||
struct xz_dec *s;
|
||||
enum xz_ret ret;
|
||||
const char *msg;
|
||||
|
||||
if (argc >= 2 && strcmp(argv[1], "--help") == 0) {
|
||||
fputs("Uncompress a .xz file from stdin to stdout.\n"
|
||||
"Arguments other than `--help' are ignored.\n",
|
||||
stdout);
|
||||
return 0;
|
||||
}
|
||||
|
||||
xz_crc32_init();
|
||||
#ifdef XZ_USE_CRC64
|
||||
xz_crc64_init();
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Support up to 64 MiB dictionary. The actually needed memory
|
||||
* is allocated once the headers have been parsed.
|
||||
*/
|
||||
s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
|
||||
if (s == NULL) {
|
||||
msg = "Memory allocation failed\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
b.in = in;
|
||||
b.in_pos = 0;
|
||||
b.in_size = 0;
|
||||
b.out = out;
|
||||
b.out_pos = 0;
|
||||
b.out_size = BUFSIZ;
|
||||
|
||||
while (true) {
|
||||
if (b.in_pos == b.in_size) {
|
||||
b.in_size = fread(in, 1, sizeof(in), stdin);
|
||||
b.in_pos = 0;
|
||||
}
|
||||
|
||||
ret = xz_dec_run(s, &b);
|
||||
|
||||
if (b.out_pos == sizeof(out)) {
|
||||
if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
|
||||
msg = "Write error\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
b.out_pos = 0;
|
||||
}
|
||||
|
||||
if (ret == XZ_OK)
|
||||
continue;
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
if (ret == XZ_UNSUPPORTED_CHECK) {
|
||||
fputs(argv[0], stderr);
|
||||
fputs(": ", stderr);
|
||||
fputs("Unsupported check; not verifying "
|
||||
"file integrity\n", stderr);
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos
|
||||
|| fclose(stdout)) {
|
||||
msg = "Write error\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
switch (ret) {
|
||||
case XZ_STREAM_END:
|
||||
xz_dec_end(s);
|
||||
return 0;
|
||||
|
||||
case XZ_MEM_ERROR:
|
||||
msg = "Memory allocation failed\n";
|
||||
goto error;
|
||||
|
||||
case XZ_MEMLIMIT_ERROR:
|
||||
msg = "Memory usage limit reached\n";
|
||||
goto error;
|
||||
|
||||
case XZ_FORMAT_ERROR:
|
||||
msg = "Not a .xz file\n";
|
||||
goto error;
|
||||
|
||||
case XZ_OPTIONS_ERROR:
|
||||
msg = "Unsupported options in the .xz headers\n";
|
||||
goto error;
|
||||
|
||||
case XZ_DATA_ERROR:
|
||||
case XZ_BUF_ERROR:
|
||||
msg = "File is corrupt\n";
|
||||
goto error;
|
||||
|
||||
default:
|
||||
msg = "Bug!\n";
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
|
||||
error:
|
||||
xz_dec_end(s);
|
||||
fputs(argv[0], stderr);
|
||||
fputs(": ", stderr);
|
||||
fputs(msg, stderr);
|
||||
return 1;
|
||||
}
|
Loading…
Reference in New Issue