/* * Copyright (C) 2015-2019 Espen Jürgensen * Copyright (C) 2010 Julien BLACHE * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include #include #include #include "misc.h" #include "conffile.h" #include "logger.h" #include "player.h" #include "outputs.h" // We measure latency each second, and after a number of measurements determined // by adjust_period_seconds we try to determine drift and latency. If both are // below the two thresholds set by the below, we don't do anything. Otherwise we // may attempt compensation by resampling. Latency is measured in samples, and // drift is change of latency per second. Both are floats. #define ALSA_MAX_LATENCY 480.0 #define ALSA_MAX_DRIFT 16.0 // If latency is jumping up and down we don't do compensation since we probably // wouldn't do a good job. We use linear regression to determine the trend, but // if r2 is below this value we won't attempt to correct sync. #define ALSA_MAX_VARIANCE 0.3 // We correct latency by adjusting the sample rate in steps. However, if the // latency keeps drifting we give up after reaching this step. #define ALSA_RESAMPLE_STEP_MAX 8 // The sample rate gets adjusted by a multiple of this number. The number of // multiples depends on the sample rate, i.e. a low sample rate may get stepped // by 16, while high one would get stepped by 4 x 16 #define ALSA_RESAMPLE_STEP_MULTIPLE 2 #define ALSA_F_STARTED (1 << 15) enum alsa_sync_state { ALSA_SYNC_OK, ALSA_SYNC_AHEAD, ALSA_SYNC_BEHIND, }; struct alsa_session { enum output_device_state state; uint64_t device_id; int callback_id; const char *devname; const char *card_name; const char *mixer_name; const char *mixer_device_name; snd_pcm_status_t *pcm_status; struct media_quality quality; int buffer_nsamp; uint32_t pos; uint32_t last_pos; uint32_t last_buflen; struct timespec last_pts; // Used for syncing with the clock struct timespec stamp_pts; uint64_t stamp_pos; // Array of latency calculations, where latency_counter tells how many are // currently in the array double *latency_history; int latency_counter; int sync_resample_step; // Here we buffer samples during startup struct ringbuffer prebuf; int offset_ms; int volume; long vol_min; long vol_max; snd_pcm_t *hdl; snd_mixer_t *mixer_hdl; snd_mixer_elem_t *vol_elem; struct alsa_session *next; }; static struct alsa_session *sessions; static bool alsa_sync_disable; static int alsa_latency_history_size; // We will try to play the music with the source quality, but if the card // doesn't support that we resample to the fallback quality static struct media_quality alsa_fallback_quality = { 44100, 16, 2 }; static struct media_quality alsa_last_quality; /* -------------------------------- FORWARDS -------------------------------- */ static void alsa_status(struct alsa_session *as); /* ------------------------------- MISC HELPERS ----------------------------- */ static void dump_config(struct alsa_session *as) { snd_output_t *output; char *debug_pcm_cfg; int ret; // Dump PCM config data for E_DBG logging ret = snd_output_buffer_open(&output); if (ret == 0) { if (snd_pcm_dump_setup(as->hdl, output) == 0) { snd_output_buffer_string(output, &debug_pcm_cfg); DPRINTF(E_DBG, L_LAUDIO, "Dump of sound device config:\n%s\n", debug_pcm_cfg); } snd_output_close(output); } } static snd_pcm_format_t bps2format(int bits_per_sample) { if (bits_per_sample == 16) return SND_PCM_FORMAT_S16_LE; else if (bits_per_sample == 24) return SND_PCM_FORMAT_S24_LE; else if (bits_per_sample == 32) return SND_PCM_FORMAT_S32_LE; else return SND_PCM_FORMAT_UNKNOWN; } static int mixer_open(struct alsa_session *as) { snd_mixer_elem_t *elem; snd_mixer_elem_t *master; snd_mixer_elem_t *pcm; snd_mixer_elem_t *custom; snd_mixer_selem_id_t *sid; int ret; ret = snd_mixer_open(&as->mixer_hdl, 0); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Failed to open mixer: %s\n", snd_strerror(ret)); as->mixer_hdl = NULL; return -1; } ret = snd_mixer_attach(as->mixer_hdl, as->mixer_device_name); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Failed to attach mixer: %s\n", snd_strerror(ret)); goto out_close; } ret = snd_mixer_selem_register(as->mixer_hdl, NULL, NULL); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Failed to register mixer: %s\n", snd_strerror(ret)); goto out_detach; } ret = snd_mixer_load(as->mixer_hdl); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Failed to load mixer: %s\n", snd_strerror(ret)); goto out_detach; } // Grab interesting elements snd_mixer_selem_id_alloca(&sid); pcm = NULL; master = NULL; custom = NULL; for (elem = snd_mixer_first_elem(as->mixer_hdl); elem; elem = snd_mixer_elem_next(elem)) { snd_mixer_selem_get_id(elem, sid); if (as->mixer_name && (strcmp(snd_mixer_selem_id_get_name(sid), as->mixer_name) == 0)) { custom = elem; break; } else if (strcmp(snd_mixer_selem_id_get_name(sid), "PCM") == 0) pcm = elem; else if (strcmp(snd_mixer_selem_id_get_name(sid), "Master") == 0) master = elem; } if (as->mixer_name) { if (custom) as->vol_elem = custom; else { DPRINTF(E_LOG, L_LAUDIO, "Failed to open configured mixer element '%s'\n", as->mixer_name); goto out_detach; } } else if (pcm) as->vol_elem = pcm; else if (master) as->vol_elem = master; else { DPRINTF(E_LOG, L_LAUDIO, "Failed to open PCM or Master mixer element\n"); goto out_detach; } // Get min & max volume snd_mixer_selem_get_playback_volume_range(as->vol_elem, &as->vol_min, &as->vol_max); return 0; out_detach: snd_mixer_detach(as->mixer_hdl, as->devname); out_close: snd_mixer_close(as->mixer_hdl); as->mixer_hdl = NULL; as->vol_elem = NULL; return -1; } static int device_open(struct alsa_session *as) { snd_pcm_hw_params_t *hw_params; snd_pcm_uframes_t bufsize; int ret; hw_params = NULL; ret = snd_pcm_open(&as->hdl, as->devname, SND_PCM_STREAM_PLAYBACK, 0); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not open playback device: %s\n", snd_strerror(ret)); return -1; } // HW params ret = snd_pcm_hw_params_malloc(&hw_params); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not allocate hw params: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_hw_params_any(as->hdl, hw_params); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not retrieve hw params: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_hw_params_set_access(as->hdl, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set access method: %s\n", snd_strerror(ret)); goto out_fail; } // Some devices (like the allo Boss DAC on RPi) fail to open w/o quality set ret = snd_pcm_hw_params_set_format(as->hdl, hw_params, bps2format(alsa_fallback_quality.bits_per_sample)); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set format (bits per sample %d): %s\n", alsa_fallback_quality.bits_per_sample, snd_strerror(ret)); goto out_fail; } ret = snd_pcm_hw_params_set_channels(as->hdl, hw_params, alsa_fallback_quality.channels); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set stereo output: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_hw_params_set_rate(as->hdl, hw_params, alsa_fallback_quality.sample_rate, 0); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Hardware doesn't support %u Hz: %s\n", alsa_fallback_quality.sample_rate, snd_strerror(ret)); goto out_fail; } ret = snd_pcm_hw_params_get_buffer_size_max(hw_params, &bufsize); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not get max buffer size: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_hw_params_set_buffer_size_max(as->hdl, hw_params, &bufsize); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set buffer size to max: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_hw_params(as->hdl, hw_params); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set hw params in device_open(): %s\n", snd_strerror(ret)); goto out_fail; } snd_pcm_hw_params_free(hw_params); hw_params = NULL; ret = mixer_open(as); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not open mixer\n"); goto out_fail; } return 0; out_fail: if (hw_params) snd_pcm_hw_params_free(hw_params); snd_pcm_close(as->hdl); as->hdl = NULL; return -1; } static int device_quality_set(struct alsa_session *as, struct media_quality *quality, char **errmsg) { snd_pcm_hw_params_t *hw_params; int ret; ret = snd_pcm_hw_params_malloc(&hw_params); if (ret < 0) { *errmsg = safe_asprintf("Could not allocate hw params: %s", snd_strerror(ret)); return -1; } ret = snd_pcm_hw_params_any(as->hdl, hw_params); if (ret < 0) { *errmsg = safe_asprintf("Could not retrieve hw params: %s", snd_strerror(ret)); goto free_params; } // Some devices, e.g. the RPi1, require this to be set again, even though it // is also set by device_open() ret = snd_pcm_hw_params_set_access(as->hdl, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED); if (ret < 0) { *errmsg = safe_asprintf("Could not set access method: %s\n", snd_strerror(ret)); goto free_params; } ret = snd_pcm_hw_params_set_rate(as->hdl, hw_params, quality->sample_rate, 0); if (ret < 0) { *errmsg = safe_asprintf("Hardware doesn't support %d Hz: %s", quality->sample_rate, snd_strerror(ret)); goto free_params; } ret = snd_pcm_hw_params_set_format(as->hdl, hw_params, bps2format(quality->bits_per_sample)); if (ret < 0) { *errmsg = safe_asprintf("Could not set %d bits per sample: %s", quality->bits_per_sample, snd_strerror(ret)); goto free_params; } ret = snd_pcm_hw_params_set_channels(as->hdl, hw_params, quality->channels); if (ret < 0) { *errmsg = safe_asprintf("Could not set channel number (%d): %s", quality->channels, snd_strerror(ret)); goto free_params; } ret = snd_pcm_hw_params(as->hdl, hw_params); if (ret < 0) { *errmsg = safe_asprintf("Could not set hw params in device_quality_set(): %s\n", snd_strerror(ret)); goto free_params; } snd_pcm_hw_params_free(hw_params); return 0; free_params: snd_pcm_hw_params_free(hw_params); return -1; } static int device_configure(struct alsa_session *as) { snd_pcm_sw_params_t *sw_params; int ret; ret = snd_pcm_sw_params_malloc(&sw_params); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not allocate sw params: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_sw_params_current(as->hdl, sw_params); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not retrieve current sw params: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_sw_params_set_tstamp_type(as->hdl, sw_params, SND_PCM_TSTAMP_TYPE_MONOTONIC); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set tstamp type: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_sw_params_set_tstamp_mode(as->hdl, sw_params, SND_PCM_TSTAMP_ENABLE); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set tstamp mode: %s\n", snd_strerror(ret)); goto out_fail; } ret = snd_pcm_sw_params(as->hdl, sw_params); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not set sw params: %s\n", snd_strerror(ret)); goto out_fail; } snd_pcm_sw_params_free(sw_params); return 0; out_fail: snd_pcm_sw_params_free(sw_params); return -1; } static void device_close(struct alsa_session *as) { snd_pcm_close(as->hdl); as->hdl = NULL; if (as->mixer_hdl) { snd_mixer_detach(as->mixer_hdl, as->devname); snd_mixer_close(as->mixer_hdl); as->mixer_hdl = NULL; as->vol_elem = NULL; } } static void playback_restart(struct alsa_session *as, struct output_buffer *obuf) { struct timespec ts; snd_pcm_state_t state; snd_pcm_sframes_t offset_nsamp; size_t size; char *errmsg; int ret; DPRINTF(E_INFO, L_LAUDIO, "Starting ALSA device '%s'\n", as->devname); state = snd_pcm_state(as->hdl); if (state != SND_PCM_STATE_PREPARED) { if (state == SND_PCM_STATE_RUNNING) snd_pcm_drop(as->hdl); // FIXME not great to do this during playback - would mean new quality drops audio? ret = snd_pcm_prepare(as->hdl); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not prepare ALSA device '%s' (state %d): %s\n", as->devname, state, snd_strerror(ret)); return; } } // Negotiate quality (sample rate) with device - first we try to use the source quality as->quality = obuf->data[0].quality; ret = device_quality_set(as, &as->quality, &errmsg); if (ret < 0) { DPRINTF(E_INFO, L_LAUDIO, "Input quality (%d/%d/%d) not supported, falling back to default. ALSA said: %s\n", as->quality.sample_rate, as->quality.bits_per_sample, as->quality.channels, errmsg); free(errmsg); as->quality = alsa_fallback_quality; ret = device_quality_set(as, &as->quality, &errmsg); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "ALSA device failed setting fallback quality: %s\n", errmsg); free(errmsg); as->state = OUTPUT_STATE_FAILED; alsa_status(as); return; } } dump_config(as); // Clear prebuffer in case start got called twice without a stop in between ringbuffer_free(&as->prebuf, 1); as->pos = 0; // Time stamps used for syncing, here we set when playback should start ts.tv_sec = OUTPUTS_BUFFER_DURATION; ts.tv_nsec = (uint64_t)as->offset_ms * 1000000UL; as->stamp_pts = timespec_add(obuf->pts, ts); // The difference between pos and start pos should match the 2 second buffer // that AirPlay uses (OUTPUTS_BUFFER_DURATION) + user configured offset_ms. We // will not use alsa's buffer for the initial buffering, because my sound // card's start_threshold is not to be counted on. Instead we allocate our own // buffer, and when it is time to play we write as much as we can to alsa's // buffer. offset_nsamp = (as->offset_ms * as->quality.sample_rate / 1000); as->buffer_nsamp = OUTPUTS_BUFFER_DURATION * as->quality.sample_rate + offset_nsamp; size = STOB(as->buffer_nsamp, as->quality.bits_per_sample, as->quality.channels); ringbuffer_init(&as->prebuf, size); as->state = OUTPUT_STATE_STREAMING; } // This function writes the sample buf into either the prebuffer or directly to // ALSA, depending on how much room there is in ALSA, and whether we are // prebuffering or not. It also transfers from the the prebuffer to ALSA, if // needed. Returns 0 on success, negative on error. static int buffer_write(struct alsa_session *as, struct output_data *odata, snd_pcm_sframes_t avail) { uint8_t *buf; size_t bufsize; size_t wrote; snd_pcm_sframes_t nsamp; snd_pcm_sframes_t ret; // Prebuffering, no actual writing if (avail == 0) { wrote = ringbuffer_write(&as->prebuf, odata->buffer, odata->bufsize); nsamp = BTOS(wrote, as->quality.bits_per_sample, as->quality.channels); return nsamp; } // Read from prebuffer if it has data and write to device if (as->prebuf.read_avail != 0) { // Maximum amount of bytes we want to read bufsize = STOB(avail, as->quality.bits_per_sample, as->quality.channels); bufsize = ringbuffer_read(&buf, bufsize, &as->prebuf); if (bufsize == 0) return 0; nsamp = BTOS(bufsize, as->quality.bits_per_sample, as->quality.channels); ret = snd_pcm_writei(as->hdl, buf, nsamp); if (ret < 0) return ret; avail -= ret; } // Write to prebuffer if device buffer does not have availability. Note that // if the prebuffer doesn't have enough room, which can happen if avail stays // low, i.e. device buffer is overrunning, then the extra samples get dropped if (odata->samples > avail) { ringbuffer_write(&as->prebuf, odata->buffer, odata->bufsize); return odata->samples; } ret = snd_pcm_writei(as->hdl, odata->buffer, odata->samples); if (ret < 0) return ret; if (ret != odata->samples) DPRINTF(E_WARN, L_LAUDIO, "ALSA partial write detected\n"); return ret; } static enum alsa_sync_state sync_check(double *drift, double *latency, struct alsa_session *as, snd_pcm_sframes_t delay) { enum alsa_sync_state sync; struct timespec ts; int elapsed; uint64_t cur_pos; uint64_t exp_pos; int32_t diff; double r2; int ret; // Would be nice to use snd_pcm_status_get_audio_htstamp here, but it doesn't // seem to be supported on my computer clock_gettime(CLOCK_MONOTONIC, &ts); // Here we calculate elapsed time since last reference position (which is // equal to playback start time, unless we have reset due to sync correction), // taking into account buffer time and configuration of offset_ms. We then // calculate our expected position based on elapsed time, and if different // from where we are + what is in the buffers then ALSA is out of sync. elapsed = (ts.tv_sec - as->stamp_pts.tv_sec) * 1000L + (ts.tv_nsec - as->stamp_pts.tv_nsec) / 1000000; if (elapsed < 0) return ALSA_SYNC_OK; cur_pos = (uint64_t)as->pos - as->stamp_pos - (delay + BTOS(as->prebuf.read_avail, as->quality.bits_per_sample, as->quality.channels)); exp_pos = (uint64_t)elapsed * as->quality.sample_rate / 1000; diff = cur_pos - exp_pos; DPRINTF(E_SPAM, L_LAUDIO, "counter %d/%d, stamp %lu:%lu, now %lu:%lu, elapsed is %d ms, cur_pos=%" PRIu64 ", exp_pos=%" PRIu64 ", diff=%d\n", as->latency_counter, alsa_latency_history_size, as->stamp_pts.tv_sec, as->stamp_pts.tv_nsec / 1000000, ts.tv_sec, ts.tv_nsec / 1000000, elapsed, cur_pos, exp_pos, diff); // Add the latency to our measurement history as->latency_history[as->latency_counter] = (double)diff; as->latency_counter++; // Haven't collected enough samples for sync evaluation yet, so just return if (as->latency_counter < alsa_latency_history_size) return ALSA_SYNC_OK; as->latency_counter = 0; ret = linear_regression(drift, latency, &r2, NULL, as->latency_history, alsa_latency_history_size); if (ret < 0) { DPRINTF(E_WARN, L_LAUDIO, "Linear regression of collected latency samples failed\n"); return ALSA_SYNC_OK; } // Set *latency to the "average" within the period *latency = (*drift) * alsa_latency_history_size / 2 + (*latency); if (abs(*latency) < ALSA_MAX_LATENCY && abs(*drift) < ALSA_MAX_DRIFT) sync = ALSA_SYNC_OK; // If both latency and drift are within thresholds -> no action else if (*latency > 0 && *drift > 0) sync = ALSA_SYNC_AHEAD; else if (*latency < 0 && *drift < 0) sync = ALSA_SYNC_BEHIND; else sync = ALSA_SYNC_OK; // Drift is counteracting latency -> no action if (sync != ALSA_SYNC_OK && r2 < ALSA_MAX_VARIANCE) { DPRINTF(E_DBG, L_LAUDIO, "Too much variance in latency measurements (r2=%f/%f), won't try to compensate\n", r2, ALSA_MAX_VARIANCE); sync = ALSA_SYNC_OK; } DPRINTF(E_DBG, L_LAUDIO, "Sync check result: drift=%f, latency=%f, r2=%f, sync=%d\n", *drift, *latency, r2, sync); return sync; } static void sync_correct(struct alsa_session *as, double drift, double latency, struct timespec pts, snd_pcm_sframes_t delay) { int step; int sign; // We change the sample_rate in steps that are a multiple of 50. So we might // step 44100 -> 44000 -> 40900 -> 44000 -> 44100. If we used percentages to // to step, we would have to deal with rounding; we don't want to step 44100 // -> 39996 -> 44099. step = ALSA_RESAMPLE_STEP_MULTIPLE * (as->quality.sample_rate / 20000); sign = (drift < 0) ? -1 : 1; if (abs(as->sync_resample_step) == ALSA_RESAMPLE_STEP_MAX) { DPRINTF(E_LOG, L_LAUDIO, "The sync of ALSA device '%s' cannot be corrected (drift=%f, latency=%f)\n", as->devname, drift, latency); as->sync_resample_step += sign; return; } else if (abs(as->sync_resample_step) > ALSA_RESAMPLE_STEP_MAX) return; // Don't do anything, we have given up // Step 0 is the original audio quality (or the fallback quality), which we // will just keep receiving if (as->sync_resample_step != 0) outputs_quality_unsubscribe(&as->quality); as->sync_resample_step += sign; as->quality.sample_rate += sign * step; if (as->sync_resample_step != 0) outputs_quality_subscribe(&as->quality); // Reset position so next sync_correct latency correction is only based on // what has elapsed since our correction as->stamp_pos = (uint64_t)as->pos - (delay + BTOS(as->prebuf.read_avail, as->quality.bits_per_sample, as->quality.channels));; as->stamp_pts = pts; DPRINTF(E_INFO, L_LAUDIO, "Adjusted sample rate to %d to sync ALSA device '%s' (drift=%f, latency=%f)\n", as->quality.sample_rate, as->devname, drift, latency); } static void playback_write(struct alsa_session *as, struct output_buffer *obuf) { snd_pcm_sframes_t ret; snd_pcm_sframes_t avail; snd_pcm_sframes_t delay; enum alsa_sync_state sync; double drift; double latency; bool prebuffering; int i; // Find the quality we want for (i = 0; obuf->data[i].buffer; i++) { if (quality_is_equal(&as->quality, &obuf->data[i].quality)) break; } if (!obuf->data[i].buffer) { DPRINTF(E_LOG, L_LAUDIO, "Output not delivering required data quality, aborting\n"); as->state = OUTPUT_STATE_FAILED; alsa_status(as); return; } prebuffering = (as->pos < as->buffer_nsamp); if (prebuffering) { // Can never fail since we don't actually write to the device as->pos += buffer_write(as, &obuf->data[i], 0); return; } // Check sync each second (or if this is first write where last_pts is zero) if (!alsa_sync_disable && (obuf->pts.tv_sec != as->last_pts.tv_sec)) { ret = snd_pcm_delay(as->hdl, &delay); if (ret == 0) { sync = sync_check(&drift, &latency, as, delay); if (sync != ALSA_SYNC_OK) sync_correct(as, drift, latency, obuf->pts, delay); } as->last_pts = obuf->pts; } avail = snd_pcm_avail(as->hdl); ret = buffer_write(as, &obuf->data[i], avail); if (ret < 0) goto alsa_error; as->pos += ret; return; alsa_error: if (ret == -EPIPE) { DPRINTF(E_WARN, L_LAUDIO, "ALSA buffer underrun\n"); ret = snd_pcm_prepare(as->hdl); if (ret < 0) { DPRINTF(E_WARN, L_LAUDIO, "ALSA couldn't recover from underrun: %s\n", snd_strerror(ret)); return; } // Fill the prebuf with audio before restarting, so we don't underrun again playback_restart(as, obuf); return; } DPRINTF(E_LOG, L_LAUDIO, "ALSA write error: %s\n", snd_strerror(ret)); as->state = OUTPUT_STATE_FAILED; alsa_status(as); } /* ---------------------------- SESSION HANDLING ---------------------------- */ static void alsa_session_free(struct alsa_session *as) { if (!as) return; device_close(as); outputs_quality_unsubscribe(&alsa_fallback_quality); ringbuffer_free(&as->prebuf, 1); snd_pcm_status_free(as->pcm_status); free(as); } static void alsa_session_cleanup(struct alsa_session *as) { struct alsa_session *s; if (as == sessions) sessions = sessions->next; else { for (s = sessions; s && (s->next != as); s = s->next) ; /* EMPTY */ if (!s) DPRINTF(E_WARN, L_LAUDIO, "WARNING: struct alsa_session not found in list; BUG!\n"); else s->next = as->next; } outputs_device_session_remove(as->device_id); alsa_session_free(as); } static struct alsa_session * alsa_session_make(struct output_device *device, int callback_id) { struct alsa_session *as; cfg_t *cfg_audio; char *errmsg; int ret; CHECK_NULL(L_LAUDIO, as = calloc(1, sizeof(struct alsa_session))); as->device_id = device->id; as->callback_id = callback_id; as->volume = device->volume; cfg_audio = cfg_getsec(cfg, "audio"); as->devname = cfg_getstr(cfg_audio, "card"); as->mixer_name = cfg_getstr(cfg_audio, "mixer"); as->mixer_device_name = cfg_getstr(cfg_audio, "mixer_device"); if (!as->mixer_device_name || strlen(as->mixer_device_name) == 0) as->mixer_device_name = cfg_getstr(cfg_audio, "card"); as->offset_ms = cfg_getint(cfg_audio, "offset_ms"); if (abs(as->offset_ms) > 1000) { DPRINTF(E_LOG, L_LAUDIO, "The ALSA offset_ms (%d) set in the configuration is out of bounds\n", as->offset_ms); as->offset_ms = 1000 * (as->offset_ms/abs(as->offset_ms)); } CHECK_NULL(L_LAUDIO, as->latency_history = calloc(alsa_latency_history_size, sizeof(double))); snd_pcm_status_malloc(&as->pcm_status); ret = device_open(as); if (ret < 0) goto out_free_session; ret = device_quality_set(as, &alsa_fallback_quality, &errmsg); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "%s\n", errmsg); free(errmsg); goto out_device_close; } // If this fails it just means we won't get timestamps, which we can handle device_configure(as); ret = outputs_quality_subscribe(&alsa_fallback_quality); if (ret < 0) { DPRINTF(E_LOG, L_LAUDIO, "Could not subscribe to fallback audio quality\n"); goto out_device_close; } as->state = OUTPUT_STATE_CONNECTED; as->next = sessions; sessions = as; // as is now the official device session outputs_device_session_add(device->id, as); return as; out_device_close: device_close(as); out_free_session: free(as); return NULL; } static void alsa_status(struct alsa_session *as) { outputs_cb(as->callback_id, as->device_id, as->state); as->callback_id = -1; if (as->state == OUTPUT_STATE_FAILED || as->state == OUTPUT_STATE_STOPPED) alsa_session_cleanup(as); } /* ------------------ INTERFACE FUNCTIONS CALLED BY OUTPUTS.C --------------- */ static int alsa_device_start(struct output_device *device, int callback_id) { struct alsa_session *as; as = alsa_session_make(device, callback_id); if (!as) return -1; as->state = OUTPUT_STATE_CONNECTED; alsa_status(as); return 0; } static int alsa_device_stop(struct output_device *device, int callback_id) { struct alsa_session *as = device->session; as->callback_id = callback_id; as->state = OUTPUT_STATE_STOPPED; alsa_status(as); // Will terminate the session since the state is STOPPED return 0; } static int alsa_device_flush(struct output_device *device, int callback_id) { struct alsa_session *as = device->session; snd_pcm_drop(as->hdl); ringbuffer_free(&as->prebuf, 1); as->callback_id = callback_id; as->state = OUTPUT_STATE_CONNECTED; alsa_status(as); return 0; } static int alsa_device_probe(struct output_device *device, int callback_id) { struct alsa_session *as; as = alsa_session_make(device, callback_id); if (!as) return -1; as->state = OUTPUT_STATE_STOPPED; alsa_status(as); // Will terminate the session since the state is STOPPED return 0; } static int alsa_device_volume_set(struct output_device *device, int callback_id) { struct alsa_session *as = device->session; int pcm_vol; if (!as) return 0; snd_mixer_handle_events(as->mixer_hdl); if (!snd_mixer_selem_is_active(as->vol_elem)) return 0; switch (device->volume) { case 0: pcm_vol = as->vol_min; break; case 100: pcm_vol = as->vol_max; break; default: pcm_vol = as->vol_min + (device->volume * (as->vol_max - as->vol_min)) / 100; break; } DPRINTF(E_DBG, L_LAUDIO, "Setting ALSA volume to %d (%d)\n", pcm_vol, device->volume); snd_mixer_selem_set_playback_volume_all(as->vol_elem, pcm_vol); as->callback_id = callback_id; alsa_status(as); return 1; } static void alsa_device_cb_set(struct output_device *device, int callback_id) { struct alsa_session *as = device->session; as->callback_id = callback_id; } static void alsa_write(struct output_buffer *obuf) { struct alsa_session *as; struct alsa_session *next; for (as = sessions; as; as = next) { next = as->next; // Need to adjust buffers and device params if sample rate changed, or if // this was the first write to the device if (!quality_is_equal(&obuf->data[0].quality, &alsa_last_quality) || as->state == OUTPUT_STATE_CONNECTED) playback_restart(as, obuf); playback_write(as, obuf); alsa_last_quality = obuf->data[0].quality; } } static int alsa_init(void) { struct output_device *device; cfg_t *cfg_audio; const char *type; // Is ALSA enabled in config? cfg_audio = cfg_getsec(cfg, "audio"); type = cfg_getstr(cfg_audio, "type"); if (type && (strcasecmp(type, "alsa") != 0)) return -1; alsa_sync_disable = cfg_getbool(cfg_audio, "sync_disable"); alsa_latency_history_size = cfg_getint(cfg_audio, "adjust_period_seconds"); CHECK_NULL(L_LAUDIO, device = calloc(1, sizeof(struct output_device))); device->id = 0; device->name = strdup(cfg_getstr(cfg_audio, "nickname")); device->type = OUTPUT_TYPE_ALSA; device->type_name = outputs_name(device->type); device->has_video = 0; DPRINTF(E_INFO, L_LAUDIO, "Adding ALSA device '%s' with name '%s'\n", cfg_getstr(cfg_audio, "card"), device->name); player_device_add(device); snd_lib_error_set_handler(logger_alsa); return 0; } static void alsa_deinit(void) { struct alsa_session *as; snd_lib_error_set_handler(NULL); for (as = sessions; sessions; as = sessions) { sessions = as->next; alsa_session_free(as); } } struct output_definition output_alsa = { .name = "ALSA", .type = OUTPUT_TYPE_ALSA, .priority = 3, .disabled = 0, .init = alsa_init, .deinit = alsa_deinit, .device_start = alsa_device_start, .device_stop = alsa_device_stop, .device_flush = alsa_device_flush, .device_probe = alsa_device_probe, .device_volume_set = alsa_device_volume_set, .device_cb_set = alsa_device_cb_set, .write = alsa_write, };