mirror of
https://github.com/muun/recovery.git
synced 2025-02-23 11:32:33 -05:00
588 lines
26 KiB
C
588 lines
26 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2020 Peter Dettman *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
**********************************************************************/
|
|
|
|
#ifndef SECP256K1_MODINV32_IMPL_H
|
|
#define SECP256K1_MODINV32_IMPL_H
|
|
|
|
#include "modinv32.h"
|
|
|
|
#include "util.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
|
|
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
|
|
*
|
|
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
|
|
* implementation for N=30, using 30-bit signed limbs represented as int32_t.
|
|
*/
|
|
|
|
#ifdef VERIFY
|
|
static const secp256k1_modinv32_signed30 SECP256K1_SIGNED30_ONE = {{1}};
|
|
|
|
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^30). */
|
|
static void secp256k1_modinv32_mul_30(secp256k1_modinv32_signed30 *r, const secp256k1_modinv32_signed30 *a, int alen, int32_t factor) {
|
|
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
|
int64_t c = 0;
|
|
int i;
|
|
for (i = 0; i < 8; ++i) {
|
|
if (i < alen) c += (int64_t)a->v[i] * factor;
|
|
r->v[i] = (int32_t)c & M30; c >>= 30;
|
|
}
|
|
if (8 < alen) c += (int64_t)a->v[8] * factor;
|
|
VERIFY_CHECK(c == (int32_t)c);
|
|
r->v[8] = (int32_t)c;
|
|
}
|
|
|
|
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A consists of alen limbs; b has 9. */
|
|
static int secp256k1_modinv32_mul_cmp_30(const secp256k1_modinv32_signed30 *a, int alen, const secp256k1_modinv32_signed30 *b, int32_t factor) {
|
|
int i;
|
|
secp256k1_modinv32_signed30 am, bm;
|
|
secp256k1_modinv32_mul_30(&am, a, alen, 1); /* Normalize all but the top limb of a. */
|
|
secp256k1_modinv32_mul_30(&bm, b, 9, factor);
|
|
for (i = 0; i < 8; ++i) {
|
|
/* Verify that all but the top limb of a and b are normalized. */
|
|
VERIFY_CHECK(am.v[i] >> 30 == 0);
|
|
VERIFY_CHECK(bm.v[i] >> 30 == 0);
|
|
}
|
|
for (i = 8; i >= 0; --i) {
|
|
if (am.v[i] < bm.v[i]) return -1;
|
|
if (am.v[i] > bm.v[i]) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Take as input a signed30 number in range (-2*modulus,modulus), and add a multiple of the modulus
|
|
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
|
|
* process. The input must have limbs in range (-2^30,2^30). The output will have limbs in range
|
|
* [0,2^30). */
|
|
static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) {
|
|
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
|
int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4],
|
|
r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8];
|
|
int32_t cond_add, cond_negate;
|
|
|
|
#ifdef VERIFY
|
|
/* Verify that all limbs are in range (-2^30,2^30). */
|
|
int i;
|
|
for (i = 0; i < 9; ++i) {
|
|
VERIFY_CHECK(r->v[i] >= -M30);
|
|
VERIFY_CHECK(r->v[i] <= M30);
|
|
}
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
|
|
#endif
|
|
|
|
/* In a first step, add the modulus if the input is negative, and then negate if requested.
|
|
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
|
|
* limbs are in range (-2^30,2^30), this cannot overflow an int32_t. Note that the right
|
|
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
|
|
* indeed the behavior of the right shift operator). */
|
|
cond_add = r8 >> 31;
|
|
r0 += modinfo->modulus.v[0] & cond_add;
|
|
r1 += modinfo->modulus.v[1] & cond_add;
|
|
r2 += modinfo->modulus.v[2] & cond_add;
|
|
r3 += modinfo->modulus.v[3] & cond_add;
|
|
r4 += modinfo->modulus.v[4] & cond_add;
|
|
r5 += modinfo->modulus.v[5] & cond_add;
|
|
r6 += modinfo->modulus.v[6] & cond_add;
|
|
r7 += modinfo->modulus.v[7] & cond_add;
|
|
r8 += modinfo->modulus.v[8] & cond_add;
|
|
cond_negate = sign >> 31;
|
|
r0 = (r0 ^ cond_negate) - cond_negate;
|
|
r1 = (r1 ^ cond_negate) - cond_negate;
|
|
r2 = (r2 ^ cond_negate) - cond_negate;
|
|
r3 = (r3 ^ cond_negate) - cond_negate;
|
|
r4 = (r4 ^ cond_negate) - cond_negate;
|
|
r5 = (r5 ^ cond_negate) - cond_negate;
|
|
r6 = (r6 ^ cond_negate) - cond_negate;
|
|
r7 = (r7 ^ cond_negate) - cond_negate;
|
|
r8 = (r8 ^ cond_negate) - cond_negate;
|
|
/* Propagate the top bits, to bring limbs back to range (-2^30,2^30). */
|
|
r1 += r0 >> 30; r0 &= M30;
|
|
r2 += r1 >> 30; r1 &= M30;
|
|
r3 += r2 >> 30; r2 &= M30;
|
|
r4 += r3 >> 30; r3 &= M30;
|
|
r5 += r4 >> 30; r4 &= M30;
|
|
r6 += r5 >> 30; r5 &= M30;
|
|
r7 += r6 >> 30; r6 &= M30;
|
|
r8 += r7 >> 30; r7 &= M30;
|
|
|
|
/* In a second step add the modulus again if the result is still negative, bringing r to range
|
|
* [0,modulus). */
|
|
cond_add = r8 >> 31;
|
|
r0 += modinfo->modulus.v[0] & cond_add;
|
|
r1 += modinfo->modulus.v[1] & cond_add;
|
|
r2 += modinfo->modulus.v[2] & cond_add;
|
|
r3 += modinfo->modulus.v[3] & cond_add;
|
|
r4 += modinfo->modulus.v[4] & cond_add;
|
|
r5 += modinfo->modulus.v[5] & cond_add;
|
|
r6 += modinfo->modulus.v[6] & cond_add;
|
|
r7 += modinfo->modulus.v[7] & cond_add;
|
|
r8 += modinfo->modulus.v[8] & cond_add;
|
|
/* And propagate again. */
|
|
r1 += r0 >> 30; r0 &= M30;
|
|
r2 += r1 >> 30; r1 &= M30;
|
|
r3 += r2 >> 30; r2 &= M30;
|
|
r4 += r3 >> 30; r3 &= M30;
|
|
r5 += r4 >> 30; r4 &= M30;
|
|
r6 += r5 >> 30; r5 &= M30;
|
|
r7 += r6 >> 30; r6 &= M30;
|
|
r8 += r7 >> 30; r7 &= M30;
|
|
|
|
r->v[0] = r0;
|
|
r->v[1] = r1;
|
|
r->v[2] = r2;
|
|
r->v[3] = r3;
|
|
r->v[4] = r4;
|
|
r->v[5] = r5;
|
|
r->v[6] = r6;
|
|
r->v[7] = r7;
|
|
r->v[8] = r8;
|
|
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(r0 >> 30 == 0);
|
|
VERIFY_CHECK(r1 >> 30 == 0);
|
|
VERIFY_CHECK(r2 >> 30 == 0);
|
|
VERIFY_CHECK(r3 >> 30 == 0);
|
|
VERIFY_CHECK(r4 >> 30 == 0);
|
|
VERIFY_CHECK(r5 >> 30 == 0);
|
|
VERIFY_CHECK(r6 >> 30 == 0);
|
|
VERIFY_CHECK(r7 >> 30 == 0);
|
|
VERIFY_CHECK(r8 >> 30 == 0);
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 0) >= 0); /* r >= 0 */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */
|
|
#endif
|
|
}
|
|
|
|
/* Data type for transition matrices (see section 3 of explanation).
|
|
*
|
|
* t = [ u v ]
|
|
* [ q r ]
|
|
*/
|
|
typedef struct {
|
|
int32_t u, v, q, r;
|
|
} secp256k1_modinv32_trans2x2;
|
|
|
|
/* Compute the transition matrix and zeta for 30 divsteps.
|
|
*
|
|
* Input: zeta: initial zeta
|
|
* f0: bottom limb of initial f
|
|
* g0: bottom limb of initial g
|
|
* Output: t: transition matrix
|
|
* Return: final zeta
|
|
*
|
|
* Implements the divsteps_n_matrix function from the explanation.
|
|
*/
|
|
static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
|
/* u,v,q,r are the elements of the transformation matrix being built up,
|
|
* starting with the identity matrix. Semantically they are signed integers
|
|
* in range [-2^30,2^30], but here represented as unsigned mod 2^32. This
|
|
* permits left shifting (which is UB for negative numbers). The range
|
|
* being inside [-2^31,2^31) means that casting to signed works correctly.
|
|
*/
|
|
uint32_t u = 1, v = 0, q = 0, r = 1;
|
|
uint32_t c1, c2, f = f0, g = g0, x, y, z;
|
|
int i;
|
|
|
|
for (i = 0; i < 30; ++i) {
|
|
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
|
|
VERIFY_CHECK((u * f0 + v * g0) == f << i);
|
|
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
|
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
|
|
c1 = zeta >> 31;
|
|
c2 = -(g & 1);
|
|
/* Compute x,y,z, conditionally negated versions of f,u,v. */
|
|
x = (f ^ c1) - c1;
|
|
y = (u ^ c1) - c1;
|
|
z = (v ^ c1) - c1;
|
|
/* Conditionally add x,y,z to g,q,r. */
|
|
g += x & c2;
|
|
q += y & c2;
|
|
r += z & c2;
|
|
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
|
|
c1 &= c2;
|
|
/* Conditionally change zeta into -zeta-2 or zeta-1. */
|
|
zeta = (zeta ^ c1) - 1;
|
|
/* Conditionally add g,q,r to f,u,v. */
|
|
f += g & c1;
|
|
u += q & c1;
|
|
v += r & c1;
|
|
/* Shifts */
|
|
g >>= 1;
|
|
u <<= 1;
|
|
v <<= 1;
|
|
/* Bounds on zeta that follow from the bounds on iteration count (max 20*30 divsteps). */
|
|
VERIFY_CHECK(zeta >= -601 && zeta <= 601);
|
|
}
|
|
/* Return data in t and return value. */
|
|
t->u = (int32_t)u;
|
|
t->v = (int32_t)v;
|
|
t->q = (int32_t)q;
|
|
t->r = (int32_t)r;
|
|
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
|
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
|
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
|
* aggregate of 30 of them will have determinant 2^30. */
|
|
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
|
|
return zeta;
|
|
}
|
|
|
|
/* Compute the transition matrix and eta for 30 divsteps (variable time).
|
|
*
|
|
* Input: eta: initial eta
|
|
* f0: bottom limb of initial f
|
|
* g0: bottom limb of initial g
|
|
* Output: t: transition matrix
|
|
* Return: final eta
|
|
*
|
|
* Implements the divsteps_n_matrix_var function from the explanation.
|
|
*/
|
|
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
|
|
/* inv256[i] = -(2*i+1)^-1 (mod 256) */
|
|
static const uint8_t inv256[128] = {
|
|
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
|
|
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
|
|
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
|
|
0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
|
|
0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
|
|
0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
|
|
0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
|
|
0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
|
|
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
|
|
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
|
|
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
|
|
};
|
|
|
|
/* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
|
|
uint32_t u = 1, v = 0, q = 0, r = 1;
|
|
uint32_t f = f0, g = g0, m;
|
|
uint16_t w;
|
|
int i = 30, limit, zeros;
|
|
|
|
for (;;) {
|
|
/* Use a sentinel bit to count zeros only up to i. */
|
|
zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
|
|
/* Perform zeros divsteps at once; they all just divide g by two. */
|
|
g >>= zeros;
|
|
u <<= zeros;
|
|
v <<= zeros;
|
|
eta -= zeros;
|
|
i -= zeros;
|
|
/* We're done once we've done 30 divsteps. */
|
|
if (i == 0) break;
|
|
VERIFY_CHECK((f & 1) == 1);
|
|
VERIFY_CHECK((g & 1) == 1);
|
|
VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
|
|
VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
|
|
/* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */
|
|
VERIFY_CHECK(eta >= -751 && eta <= 751);
|
|
/* If eta is negative, negate it and replace f,g with g,-f. */
|
|
if (eta < 0) {
|
|
uint32_t tmp;
|
|
eta = -eta;
|
|
tmp = f; f = g; g = -tmp;
|
|
tmp = u; u = q; q = -tmp;
|
|
tmp = v; v = r; r = -tmp;
|
|
}
|
|
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
|
|
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
|
|
* can be done as its sign will flip once that happens. */
|
|
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
|
|
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
|
|
VERIFY_CHECK(limit > 0 && limit <= 30);
|
|
m = (UINT32_MAX >> (32 - limit)) & 255U;
|
|
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
|
|
w = (g * inv256[(f >> 1) & 127]) & m;
|
|
/* Do so. */
|
|
g += f * w;
|
|
q += u * w;
|
|
r += v * w;
|
|
VERIFY_CHECK((g & m) == 0);
|
|
}
|
|
/* Return data in t and return value. */
|
|
t->u = (int32_t)u;
|
|
t->v = (int32_t)v;
|
|
t->q = (int32_t)q;
|
|
t->r = (int32_t)r;
|
|
/* The determinant of t must be a power of two. This guarantees that multiplication with t
|
|
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
|
|
* will be divided out again). As each divstep's individual matrix has determinant 2, the
|
|
* aggregate of 30 of them will have determinant 2^30. */
|
|
VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30);
|
|
return eta;
|
|
}
|
|
|
|
/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
|
|
*
|
|
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
|
|
* (-2^30,2^30).
|
|
*
|
|
* This implements the update_de function from the explanation.
|
|
*/
|
|
static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) {
|
|
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
|
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
|
|
int32_t di, ei, md, me, sd, se;
|
|
int64_t cd, ce;
|
|
int i;
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
|
|
VERIFY_CHECK((labs(u) + labs(v)) >= 0); /* |u|+|v| doesn't overflow */
|
|
VERIFY_CHECK((labs(q) + labs(r)) >= 0); /* |q|+|r| doesn't overflow */
|
|
VERIFY_CHECK((labs(u) + labs(v)) <= M30 + 1); /* |u|+|v| <= 2^30 */
|
|
VERIFY_CHECK((labs(q) + labs(r)) <= M30 + 1); /* |q|+|r| <= 2^30 */
|
|
#endif
|
|
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
|
|
sd = d->v[8] >> 31;
|
|
se = e->v[8] >> 31;
|
|
md = (u & sd) + (v & se);
|
|
me = (q & sd) + (r & se);
|
|
/* Begin computing t*[d,e]. */
|
|
di = d->v[0];
|
|
ei = e->v[0];
|
|
cd = (int64_t)u * di + (int64_t)v * ei;
|
|
ce = (int64_t)q * di + (int64_t)r * ei;
|
|
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 30 zero bottom bits. */
|
|
md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30;
|
|
me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30;
|
|
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
|
|
cd += (int64_t)modinfo->modulus.v[0] * md;
|
|
ce += (int64_t)modinfo->modulus.v[0] * me;
|
|
/* Verify that the low 30 bits of the computation are indeed zero, and then throw them away. */
|
|
VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30;
|
|
VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30;
|
|
/* Now iteratively compute limb i=1..8 of t*[d,e]+modulus*[md,me], and store them in output
|
|
* limb i-1 (shifting down by 30 bits). */
|
|
for (i = 1; i < 9; ++i) {
|
|
di = d->v[i];
|
|
ei = e->v[i];
|
|
cd += (int64_t)u * di + (int64_t)v * ei;
|
|
ce += (int64_t)q * di + (int64_t)r * ei;
|
|
cd += (int64_t)modinfo->modulus.v[i] * md;
|
|
ce += (int64_t)modinfo->modulus.v[i] * me;
|
|
d->v[i - 1] = (int32_t)cd & M30; cd >>= 30;
|
|
e->v[i - 1] = (int32_t)ce & M30; ce >>= 30;
|
|
}
|
|
/* What remains is limb 9 of t*[d,e]+modulus*[md,me]; store it as output limb 8. */
|
|
d->v[8] = (int32_t)cd;
|
|
e->v[8] = (int32_t)ce;
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */
|
|
#endif
|
|
}
|
|
|
|
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
|
|
*
|
|
* This implements the update_fg function from the explanation.
|
|
*/
|
|
static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
|
|
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
|
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
|
|
int32_t fi, gi;
|
|
int64_t cf, cg;
|
|
int i;
|
|
/* Start computing t*[f,g]. */
|
|
fi = f->v[0];
|
|
gi = g->v[0];
|
|
cf = (int64_t)u * fi + (int64_t)v * gi;
|
|
cg = (int64_t)q * fi + (int64_t)r * gi;
|
|
/* Verify that the bottom 30 bits of the result are zero, and then throw them away. */
|
|
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
|
|
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
|
|
/* Now iteratively compute limb i=1..8 of t*[f,g], and store them in output limb i-1 (shifting
|
|
* down by 30 bits). */
|
|
for (i = 1; i < 9; ++i) {
|
|
fi = f->v[i];
|
|
gi = g->v[i];
|
|
cf += (int64_t)u * fi + (int64_t)v * gi;
|
|
cg += (int64_t)q * fi + (int64_t)r * gi;
|
|
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
|
|
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
|
|
}
|
|
/* What remains is limb 9 of t*[f,g]; store it as output limb 8. */
|
|
f->v[8] = (int32_t)cf;
|
|
g->v[8] = (int32_t)cg;
|
|
}
|
|
|
|
/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps.
|
|
*
|
|
* Version that operates on a variable number of limbs in f and g.
|
|
*
|
|
* This implements the update_fg function from the explanation in modinv64_impl.h.
|
|
*/
|
|
static void secp256k1_modinv32_update_fg_30_var(int len, secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) {
|
|
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
|
const int32_t u = t->u, v = t->v, q = t->q, r = t->r;
|
|
int32_t fi, gi;
|
|
int64_t cf, cg;
|
|
int i;
|
|
VERIFY_CHECK(len > 0);
|
|
/* Start computing t*[f,g]. */
|
|
fi = f->v[0];
|
|
gi = g->v[0];
|
|
cf = (int64_t)u * fi + (int64_t)v * gi;
|
|
cg = (int64_t)q * fi + (int64_t)r * gi;
|
|
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
|
|
VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30;
|
|
VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30;
|
|
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
|
|
* down by 30 bits). */
|
|
for (i = 1; i < len; ++i) {
|
|
fi = f->v[i];
|
|
gi = g->v[i];
|
|
cf += (int64_t)u * fi + (int64_t)v * gi;
|
|
cg += (int64_t)q * fi + (int64_t)r * gi;
|
|
f->v[i - 1] = (int32_t)cf & M30; cf >>= 30;
|
|
g->v[i - 1] = (int32_t)cg & M30; cg >>= 30;
|
|
}
|
|
/* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
|
|
f->v[len - 1] = (int32_t)cf;
|
|
g->v[len - 1] = (int32_t)cg;
|
|
}
|
|
|
|
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
|
|
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
|
|
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
|
|
secp256k1_modinv32_signed30 d = {{0}};
|
|
secp256k1_modinv32_signed30 e = {{1}};
|
|
secp256k1_modinv32_signed30 f = modinfo->modulus;
|
|
secp256k1_modinv32_signed30 g = *x;
|
|
int i;
|
|
int32_t zeta = -1; /* zeta = -(delta+1/2); delta is initially 1/2. */
|
|
|
|
/* Do 20 iterations of 30 divsteps each = 600 divsteps. 590 suffices for 256-bit inputs. */
|
|
for (i = 0; i < 20; ++i) {
|
|
/* Compute transition matrix and new zeta after 30 divsteps. */
|
|
secp256k1_modinv32_trans2x2 t;
|
|
zeta = secp256k1_modinv32_divsteps_30(zeta, f.v[0], g.v[0], &t);
|
|
/* Update d,e using that transition matrix. */
|
|
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
|
|
/* Update f,g using that transition matrix. */
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
|
|
#endif
|
|
secp256k1_modinv32_update_fg_30(&f, &g, &t);
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */
|
|
#endif
|
|
}
|
|
|
|
/* At this point sufficient iterations have been performed that g must have reached 0
|
|
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
|
|
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
|
|
#ifdef VERIFY
|
|
/* g == 0 */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &SECP256K1_SIGNED30_ONE, 0) == 0);
|
|
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
|
|
secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
|
|
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
|
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
|
(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) == 0 ||
|
|
secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) == 0)));
|
|
#endif
|
|
|
|
/* Optionally negate d, normalize to [0,modulus), and return it. */
|
|
secp256k1_modinv32_normalize_30(&d, f.v[8], modinfo);
|
|
*x = d;
|
|
}
|
|
|
|
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
|
|
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
|
|
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
|
|
secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}};
|
|
secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}};
|
|
secp256k1_modinv32_signed30 f = modinfo->modulus;
|
|
secp256k1_modinv32_signed30 g = *x;
|
|
#ifdef VERIFY
|
|
int i = 0;
|
|
#endif
|
|
int j, len = 9;
|
|
int32_t eta = -1; /* eta = -delta; delta is initially 1 (faster for the variable-time code) */
|
|
int32_t cond, fn, gn;
|
|
|
|
/* Do iterations of 30 divsteps each until g=0. */
|
|
while (1) {
|
|
/* Compute transition matrix and new eta after 30 divsteps. */
|
|
secp256k1_modinv32_trans2x2 t;
|
|
eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t);
|
|
/* Update d,e using that transition matrix. */
|
|
secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo);
|
|
/* Update f,g using that transition matrix. */
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
|
#endif
|
|
secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
|
|
/* If the bottom limb of g is 0, there is a chance g=0. */
|
|
if (g.v[0] == 0) {
|
|
cond = 0;
|
|
/* Check if all other limbs are also 0. */
|
|
for (j = 1; j < len; ++j) {
|
|
cond |= g.v[j];
|
|
}
|
|
/* If so, we're done. */
|
|
if (cond == 0) break;
|
|
}
|
|
|
|
/* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
|
|
fn = f.v[len - 1];
|
|
gn = g.v[len - 1];
|
|
cond = ((int32_t)len - 2) >> 31;
|
|
cond |= fn ^ (fn >> 31);
|
|
cond |= gn ^ (gn >> 31);
|
|
/* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
|
|
if (cond == 0) {
|
|
f.v[len - 2] |= (uint32_t)fn << 30;
|
|
g.v[len - 2] |= (uint32_t)gn << 30;
|
|
--len;
|
|
}
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(++i < 25); /* We should never need more than 25*30 = 750 divsteps */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
|
|
#endif
|
|
}
|
|
|
|
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
|
|
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
|
|
#ifdef VERIFY
|
|
/* g == 0 */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &SECP256K1_SIGNED30_ONE, 0) == 0);
|
|
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
|
|
VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, -1) == 0 ||
|
|
secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, 1) == 0 ||
|
|
(secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
|
secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 &&
|
|
(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) == 0 ||
|
|
secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) == 0)));
|
|
#endif
|
|
|
|
/* Optionally negate d, normalize to [0,modulus), and return it. */
|
|
secp256k1_modinv32_normalize_30(&d, f.v[len - 1], modinfo);
|
|
*x = d;
|
|
}
|
|
|
|
#endif /* SECP256K1_MODINV32_IMPL_H */
|