2025-01-22 14:16:31 -08:00

245 lines
6.4 KiB
Rust

// This file is part of Moonfire NVR, a security camera network video recorder.
// Copyright (C) 2018 The Moonfire NVR Authors; see AUTHORS and LICENSE.txt.
// SPDX-License-Identifier: GPL-v3.0-or-later WITH GPL-3.0-linking-exception.
//! Clock interface and implementations for testability.
//!
//! Note these types are in a more standard nanosecond-based format, where
//! [`crate::time`] uses Moonfire's 90 kHz time base.
use nix::sys::time::{TimeSpec, TimeValLike as _};
use std::sync::Mutex;
use std::sync::{mpsc, Arc};
use std::thread;
pub use std::time::Duration;
use tracing::warn;
use crate::error::Error;
use crate::shutdown::ShutdownError;
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct SystemTime(pub TimeSpec);
impl SystemTime {
pub fn new(sec: nix::sys::time::time_t, nsec: i64) -> Self {
SystemTime(TimeSpec::new(sec, nsec))
}
pub fn as_secs(&self) -> i64 {
self.0.num_seconds()
}
}
impl std::ops::Add<Duration> for SystemTime {
type Output = SystemTime;
fn add(self, rhs: Duration) -> SystemTime {
SystemTime(self.0 + TimeSpec::from(rhs))
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct Instant(pub TimeSpec);
impl Instant {
pub fn from_secs(secs: i64) -> Self {
Instant(TimeSpec::seconds(secs))
}
pub fn saturating_sub(&self, o: &Instant) -> Duration {
if o > self {
Duration::default()
} else {
Duration::from(self.0 - o.0)
}
}
}
impl std::fmt::Debug for Instant {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
// TODO: should use saturating always?
impl std::ops::Sub<Instant> for Instant {
type Output = Duration;
fn sub(self, rhs: Instant) -> Duration {
Duration::from(self.0 - rhs.0)
}
}
impl std::ops::Add<Duration> for Instant {
type Output = Instant;
fn add(self, rhs: Duration) -> Instant {
Instant(self.0 + TimeSpec::from(rhs))
}
}
/// Abstract interface to the system clocks. This is for testability.
pub trait Clocks: Send + Sync + 'static {
/// Gets the current time from `CLOCK_REALTIME`.
fn realtime(&self) -> SystemTime;
/// Gets the current time from a monotonic clock.
///
/// On Linux, this uses `CLOCK_BOOTTIME`, which includes suspended time.
/// On other systems, it uses `CLOCK_MONOTONIC`.
fn monotonic(&self) -> Instant;
/// Causes the current thread to sleep for the specified time.
fn sleep(&self, how_long: Duration);
/// Calls `rcv.recv_timeout` or substitutes a test implementation.
fn recv_timeout<T>(
&self,
rcv: &mpsc::Receiver<T>,
timeout: Duration,
) -> Result<T, mpsc::RecvTimeoutError>;
}
pub fn retry<C, T, E>(
clocks: &C,
shutdown_rx: &crate::shutdown::Receiver,
f: &mut dyn FnMut() -> Result<T, E>,
) -> Result<T, ShutdownError>
where
C: Clocks,
E: Into<Error>,
{
loop {
let e = match f() {
Ok(t) => return Ok(t),
Err(e) => e.into(),
};
shutdown_rx.check()?;
let sleep_time = Duration::from_secs(1);
warn!(
exception = %e.chain(),
"sleeping for 1 s after error"
);
clocks.sleep(sleep_time);
}
}
#[derive(Copy, Clone)]
pub struct RealClocks {}
impl Clocks for RealClocks {
fn realtime(&self) -> SystemTime {
SystemTime(
nix::time::clock_gettime(nix::time::ClockId::CLOCK_REALTIME)
.expect("clock_gettime(REALTIME) should succeed"),
)
}
#[cfg(target_os = "linux")]
fn monotonic(&self) -> Instant {
Instant(
nix::time::clock_gettime(nix::time::ClockId::CLOCK_BOOTTIME)
.expect("clock_gettime(BOOTTIME) should succeed"),
)
}
#[cfg(not(target_os = "linux"))]
fn monotonic(&self) -> Instant {
Instant(
nix::time::clock_gettime(nix::time::ClockId::CLOCK_MONOTONIC)
.expect("clock_gettime(MONOTONIC) should succeed"),
)
}
fn sleep(&self, how_long: Duration) {
thread::sleep(how_long)
}
fn recv_timeout<T>(
&self,
rcv: &mpsc::Receiver<T>,
timeout: Duration,
) -> Result<T, mpsc::RecvTimeoutError> {
rcv.recv_timeout(timeout)
}
}
/// Logs a warning if the TimerGuard lives "too long", using the label created by a supplied
/// function.
pub struct TimerGuard<'a, C: Clocks + ?Sized, S: AsRef<str>, F: FnOnce() -> S + 'a> {
clocks: &'a C,
label_f: Option<F>,
start: Instant,
}
impl<'a, C: Clocks + ?Sized, S: AsRef<str>, F: FnOnce() -> S + 'a> TimerGuard<'a, C, S, F> {
pub fn new(clocks: &'a C, label_f: F) -> Self {
TimerGuard {
clocks,
label_f: Some(label_f),
start: clocks.monotonic(),
}
}
}
impl<'a, C, S, F> Drop for TimerGuard<'a, C, S, F>
where
C: Clocks + ?Sized,
S: AsRef<str>,
F: FnOnce() -> S + 'a,
{
fn drop(&mut self) {
let elapsed = self.clocks.monotonic() - self.start;
if elapsed.as_secs() >= 1 {
let label_f = self.label_f.take().unwrap();
warn!("{} took {:?}!", label_f().as_ref(), elapsed);
}
}
}
/// Simulated clock for testing.
#[derive(Clone)]
pub struct SimulatedClocks(Arc<SimulatedClocksInner>);
struct SimulatedClocksInner {
boot: SystemTime,
uptime: Mutex<Duration>,
}
impl SimulatedClocks {
pub fn new(boot: SystemTime) -> Self {
SimulatedClocks(Arc::new(SimulatedClocksInner {
boot,
uptime: Mutex::new(Duration::from_secs(0)),
}))
}
}
impl Clocks for SimulatedClocks {
fn realtime(&self) -> SystemTime {
self.0.boot + *self.0.uptime.lock().unwrap()
}
fn monotonic(&self) -> Instant {
Instant(TimeSpec::from(*self.0.uptime.lock().unwrap()))
}
/// Advances the clock by the specified amount without actually sleeping.
fn sleep(&self, how_long: Duration) {
let mut l = self.0.uptime.lock().unwrap();
*l += how_long;
}
/// Advances the clock by the specified amount if data is not immediately available.
fn recv_timeout<T>(
&self,
rcv: &mpsc::Receiver<T>,
timeout: Duration,
) -> Result<T, mpsc::RecvTimeoutError> {
let r = rcv.recv_timeout(Duration::new(0, 0));
if r.is_err() {
self.sleep(timeout);
}
r
}
}