moonfire-nvr/src/recording.rs
Scott Lamb 8df0eae567 add a basic test of Streamer, fix it
This test is copied from the C++ implementation. It ensures the timestamps are
calculated accurately from the pts rather than using ffmpeg's estimated
duration. The Rust implementation was doing the easy-but-inaccurate thing, so
fix that to make the test pass.

Additionally, I did this with a code structure that should ensure the Rust
code never drops a Writer without indicating to the syncer that its uuid is
abandoned. Such a bug essentially leaks the partially-written file, although a
restart would cause it to be properly unlinked and marked as such. There are
no tests (yet) that exercise this scenario, though.
2016-12-06 18:41:44 -08:00

761 lines
28 KiB
Rust

// This file is part of Moonfire NVR, a security camera digital video recorder.
// Copyright (C) 2016 Scott Lamb <slamb@slamb.org>
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// In addition, as a special exception, the copyright holders give
// permission to link the code of portions of this program with the
// OpenSSL library under certain conditions as described in each
// individual source file, and distribute linked combinations including
// the two.
//
// You must obey the GNU General Public License in all respects for all
// of the code used other than OpenSSL. If you modify file(s) with this
// exception, you may extend this exception to your version of the
// file(s), but you are not obligated to do so. If you do not wish to do
// so, delete this exception statement from your version. If you delete
// this exception statement from all source files in the program, then
// also delete it here.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#![allow(inline_always)]
extern crate uuid;
use db;
use std::ops;
use error::Error;
use std::fmt;
use std::ops::Range;
use std::string::String;
use std::sync::MutexGuard;
use time;
pub const TIME_UNITS_PER_SEC: i64 = 90000;
pub const DESIRED_RECORDING_DURATION: i64 = 60 * TIME_UNITS_PER_SEC;
pub const MAX_RECORDING_DURATION: i64 = 5 * 60 * TIME_UNITS_PER_SEC;
/// A time specified as 90,000ths of a second since 1970-01-01 00:00:00 UTC.
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Serialize)]
pub struct Time(pub i64);
impl Time {
pub fn new(tm: time::Timespec) -> Self {
Time(tm.sec * TIME_UNITS_PER_SEC + tm.nsec as i64 * TIME_UNITS_PER_SEC / 1_000_000_000)
}
pub fn unix_seconds(&self) -> i64 { self.0 / TIME_UNITS_PER_SEC }
}
impl ops::Sub for Time {
type Output = Duration;
fn sub(self, rhs: Time) -> Duration { Duration(self.0 - rhs.0) }
}
impl ops::AddAssign<Duration> for Time {
fn add_assign(&mut self, rhs: Duration) { self.0 += rhs.0 }
}
impl ops::Add<Duration> for Time {
type Output = Time;
fn add(self, rhs: Duration) -> Time { Time(self.0 + rhs.0) }
}
impl ops::Sub<Duration> for Time {
type Output = Time;
fn sub(self, rhs: Duration) -> Time { Time(self.0 - rhs.0) }
}
impl fmt::Display for Time {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let tm = time::at(time::Timespec{sec: self.0 / TIME_UNITS_PER_SEC, nsec: 0});
write!(f, "{}:{:05}", tm.strftime("%FT%T%Z").or_else(|_| Err(fmt::Error))?,
self.0 % TIME_UNITS_PER_SEC)
}
}
/// A duration specified in 1/90,000ths of a second.
/// Durations are typically non-negative, but a `db::CameraDayValue::duration` may be negative.
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Serialize)]
pub struct Duration(pub i64);
impl fmt::Display for Duration {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut seconds = self.0 / TIME_UNITS_PER_SEC;
const MINUTE_IN_SECONDS: i64 = 60;
const HOUR_IN_SECONDS: i64 = 60 * MINUTE_IN_SECONDS;
const DAY_IN_SECONDS: i64 = 24 * HOUR_IN_SECONDS;
let days = seconds / DAY_IN_SECONDS;
seconds %= DAY_IN_SECONDS;
let hours = seconds / HOUR_IN_SECONDS;
seconds %= HOUR_IN_SECONDS;
let minutes = seconds / MINUTE_IN_SECONDS;
seconds %= MINUTE_IN_SECONDS;
let mut have_written = if days > 0 {
write!(f, "{} day{}", days, if days == 1 { "" } else { "s" })?;
true
} else {
false
};
if hours > 0 {
write!(f, "{}{} hour{}", if have_written { " " } else { "" },
hours, if hours == 1 { "" } else { "s" })?;
have_written = true;
}
if minutes > 0 {
write!(f, "{}{} minute{}", if have_written { " " } else { "" },
minutes, if minutes == 1 { "" } else { "s" })?;
have_written = true;
}
if seconds > 0 || !have_written {
write!(f, "{}{} second{}", if have_written { " " } else { "" },
seconds, if seconds == 1 { "" } else { "s" })?;
}
Ok(())
}
}
impl ops::Add for Duration {
type Output = Duration;
fn add(self, rhs: Duration) -> Duration { Duration(self.0 + rhs.0) }
}
impl ops::AddAssign for Duration {
fn add_assign(&mut self, rhs: Duration) { self.0 += rhs.0 }
}
impl ops::SubAssign for Duration {
fn sub_assign(&mut self, rhs: Duration) { self.0 -= rhs.0 }
}
#[derive(Clone, Copy, Debug)]
pub struct SampleIndexIterator {
i: usize,
pub pos: i32,
pub start_90k: i32,
pub duration_90k: i32,
pub bytes: i32,
bytes_key: i32,
bytes_nonkey: i32,
pub is_key: bool
}
#[derive(Debug)]
pub struct SampleIndexEncoder {
// Internal state.
prev_duration_90k: i32,
prev_bytes_key: i32,
prev_bytes_nonkey: i32,
// Eventual output.
// TODO: move to another struct?
pub sample_file_bytes: i32,
pub total_duration_90k: i32,
pub video_samples: i32,
pub video_sync_samples: i32,
pub video_index: Vec<u8>,
}
/// Zigzag-encodes a signed integer, as in [protocol buffer
/// encoding](https://developers.google.com/protocol-buffers/docs/encoding#types). Uses the low bit
/// to indicate signedness (1 = negative, 0 = non-negative).
#[inline(always)]
fn zigzag32(i: i32) -> u32 { ((i << 1) as u32) ^ ((i >> 31) as u32) }
/// Zigzag-decodes to a signed integer.
/// See `zigzag`.
#[inline(always)]
fn unzigzag32(i: u32) -> i32 { ((i >> 1) as i32) ^ -((i & 1) as i32) }
#[inline(always)]
fn decode_varint32(data: &[u8], i: usize) -> Result<(u32, usize), ()> {
// Unroll a few likely possibilities before going into the robust out-of-line loop.
// This aids branch prediction.
if data.len() > i && (data[i] & 0x80) == 0 {
return Ok((data[i] as u32, i+1))
} else if data.len() > i + 1 && (data[i+1] & 0x80) == 0 {
return Ok((( (data[i] & 0x7f) as u32) |
(( data[i+1] as u32) << 7),
i+2))
} else if data.len() > i + 2 && (data[i+2] & 0x80) == 0 {
return Ok((( (data[i] & 0x7f) as u32) |
(((data[i+1] & 0x7f) as u32) << 7) |
(( data[i+2] as u32) << 14),
i+3))
}
decode_varint32_slow(data, i)
}
#[cold]
fn decode_varint32_slow(data: &[u8], mut i: usize) -> Result<(u32, usize), ()> {
let l = data.len();
let mut out = 0;
let mut shift = 0;
loop {
if i == l {
return Err(())
}
let b = data[i];
if shift == 28 && (b & 0xf0) != 0 {
return Err(())
}
out |= ((b & 0x7f) as u32) << shift;
shift += 7;
i += 1;
if (b & 0x80) == 0 {
break;
}
}
Ok((out, i))
}
fn append_varint32(i: u32, data: &mut Vec<u8>) {
if i < 1u32 << 7 {
data.push(i as u8);
} else if i < 1u32 << 14 {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(i >> 7) as u8]);
} else if i < 1u32 << 21 {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(i >> 14) as u8]);
} else if i < 1u32 << 28 {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(((i >> 14) & 0x7F) | 0x80) as u8,
(i >> 21) as u8]);
} else {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(((i >> 14) & 0x7F) | 0x80) as u8,
(((i >> 21) & 0x7F) | 0x80) as u8,
(i >> 28) as u8]);
}
}
impl SampleIndexIterator {
pub fn new() -> SampleIndexIterator {
SampleIndexIterator{i: 0,
pos: 0,
start_90k: 0,
duration_90k: 0,
bytes: 0,
bytes_key: 0,
bytes_nonkey: 0,
is_key: false}
}
pub fn next(&mut self, data: &[u8]) -> Result<bool, Error> {
self.pos += self.bytes;
self.start_90k += self.duration_90k;
if self.i == data.len() {
return Ok(false)
}
let (raw1, i1) = match decode_varint32(data, self.i) {
Ok(tuple) => tuple,
Err(()) => return Err(Error::new(format!("bad varint 1 at offset {}", self.i))),
};
let (raw2, i2) = match decode_varint32(data, i1) {
Ok(tuple) => tuple,
Err(()) => return Err(Error::new(format!("bad varint 2 at offset {}", i1))),
};
self.i = i2;
let duration_90k_delta = unzigzag32(raw1 >> 1);
self.duration_90k += duration_90k_delta;
if self.duration_90k < 0 {
return Err(Error{
description: format!("negative duration {} after applying delta {}",
self.duration_90k, duration_90k_delta),
cause: None});
}
if self.duration_90k == 0 && data.len() > self.i {
return Err(Error{
description: format!("zero duration only allowed at end; have {} bytes left",
data.len() - self.i),
cause: None});
}
self.is_key = (raw1 & 1) == 1;
let bytes_delta = unzigzag32(raw2);
self.bytes = if self.is_key {
self.bytes_key += bytes_delta;
self.bytes_key
} else {
self.bytes_nonkey += bytes_delta;
self.bytes_nonkey
};
if self.bytes <= 0 {
return Err(Error{
description: format!("non-positive bytes {} after applying delta {} to key={} frame at ts {}",
self.bytes, bytes_delta, self.is_key,
self.start_90k),
cause: None});
}
Ok(true)
}
}
impl SampleIndexEncoder {
pub fn new() -> Self {
SampleIndexEncoder{
prev_duration_90k: 0,
prev_bytes_key: 0,
prev_bytes_nonkey: 0,
total_duration_90k: 0,
sample_file_bytes: 0,
video_samples: 0,
video_sync_samples: 0,
video_index: Vec::new(),
}
}
pub fn add_sample(&mut self, duration_90k: i32, bytes: i32, is_key: bool) {
let duration_delta = duration_90k - self.prev_duration_90k;
self.prev_duration_90k = duration_90k;
self.total_duration_90k += duration_90k;
self.sample_file_bytes += bytes;
self.video_samples += 1;
let bytes_delta = bytes - if is_key {
let prev = self.prev_bytes_key;
self.video_sync_samples += 1;
self.prev_bytes_key = bytes;
prev
} else {
let prev = self.prev_bytes_nonkey;
self.prev_bytes_nonkey = bytes;
prev
};
append_varint32((zigzag32(duration_delta) << 1) | (is_key as u32), &mut self.video_index);
append_varint32(zigzag32(bytes_delta), &mut self.video_index);
}
}
/// A segment represents a view of some or all of a single recording, starting from a key frame.
/// Used by the `Mp4FileBuilder` class to splice together recordings into a single virtual .mp4.
pub struct Segment {
pub id: i64,
pub start: Time,
begin: SampleIndexIterator,
pub file_end: i32,
pub desired_range_90k: Range<i32>,
actual_end_90k: i32,
pub frames: i32,
pub key_frames: i32,
pub video_sample_entry_id: i32,
}
impl Segment {
/// Creates a segment.
///
/// `desired_range_90k` represents the desired range of the segment relative to the start of
/// the recording. The actual range will start at the first key frame at or before the
/// desired start time. (The caller is responsible for creating an edit list to skip the
/// undesired portion.) It will end at the first frame after the desired range (unless the
/// desired range extends beyond the recording).
pub fn new(db: &MutexGuard<db::LockedDatabase>,
recording: &db::ListCameraRecordingsRow,
desired_range_90k: Range<i32>) -> Result<Segment, Error> {
let mut self_ = Segment{
id: recording.id,
start: recording.start,
begin: SampleIndexIterator::new(),
file_end: recording.sample_file_bytes,
desired_range_90k: desired_range_90k,
actual_end_90k: recording.duration_90k,
frames: recording.video_samples,
key_frames: recording.video_sync_samples,
video_sample_entry_id: recording.video_sample_entry.id,
};
if self_.desired_range_90k.start > self_.desired_range_90k.end ||
self_.desired_range_90k.end > self_.actual_end_90k {
return Err(Error::new(format!(
"desired range [{}, {}) invalid for recording of length {}",
self_.desired_range_90k.start, self_.desired_range_90k.end, self_.actual_end_90k)));
}
if self_.desired_range_90k.start == 0 &&
self_.desired_range_90k.end == self_.actual_end_90k {
// Fast path. Existing entry is fine.
return Ok(self_)
}
// Slow path. Need to iterate through the index.
let extra = db.get_recording(self_.id)?;
let data = &(&extra).video_index;
let mut it = SampleIndexIterator::new();
if !it.next(data)? {
return Err(Error{description: String::from("no index"),
cause: None});
}
if !it.is_key {
return Err(Error{description: String::from("not key frame"),
cause: None});
}
// Stop when hitting a frame with this start time.
// Going until the end of the recording is special-cased because there can be a trailing
// frame of zero duration. It's unclear exactly how this should be handled, but let's
// include it for consistency with the fast path. It'd be bizarre to have it included or
// not based on desired_range_90k.start.
let end_90k = if self_.desired_range_90k.end == self_.actual_end_90k {
i32::max_value()
} else {
self_.desired_range_90k.end
};
loop {
if it.start_90k <= self_.desired_range_90k.start && it.is_key {
// new start candidate.
self_.begin = it;
self_.frames = 0;
self_.key_frames = 0;
}
if it.start_90k >= end_90k {
break;
}
self_.frames += 1;
self_.key_frames += it.is_key as i32;
if !it.next(data)? {
break;
}
}
self_.file_end = it.pos;
self_.actual_end_90k = it.start_90k;
Ok(self_)
}
/// Returns the byte range within the sample file of data associated with this segment.
pub fn sample_file_range(&self) -> Range<u64> { self.begin.pos as u64 .. self.file_end as u64 }
/// Returns the actual time range as described in `new`.
pub fn actual_time_90k(&self) -> Range<i32> { self.begin.start_90k .. self.actual_end_90k }
/// Iterates through each frame in the segment.
/// Must be called without the database lock held; retrieves video index from the cache.
pub fn foreach<F>(&self, db: &db::Database, mut f: F) -> Result<(), Error>
where F: FnMut(&SampleIndexIterator) -> Result<(), Error>
{
let extra = db.lock().get_recording(self.id)?;
let data = &(&extra).video_index;
let mut it = self.begin;
if it.i == 0 {
if !it.next(data)? {
return Err(Error::new(format!("recording {}: no frames", self.id)));
}
if !it.is_key {
return Err(Error::new(format!("recording {}: doesn't start with key frame",
self.id)));
}
}
let mut have_frame = true;
let mut key_frame = 0;
for i in 0 .. self.frames {
if !have_frame {
return Err(Error::new(format!("recording {}: expected {} frames, found only {}",
self.id, self.frames, i+1)));
}
if it.is_key {
key_frame += 1;
if key_frame > self.key_frames {
return Err(Error::new(format!("recording {}: more than expected {} key frames",
self.id, self.key_frames)));
}
}
f(&it)?;
have_frame = it.next(data)?;
}
if key_frame < self.key_frames {
return Err(Error::new(format!("recording {}: expected {} key frames, found only {}",
self.id, self.key_frames, key_frame)));
}
Ok(())
}
}
#[cfg(test)]
mod tests {
extern crate test;
use super::{append_varint32, decode_varint32, unzigzag32, zigzag32};
use super::*;
use self::test::Bencher;
use testutil::TestDb;
#[test]
fn test_zigzag() {
struct Test {
decoded: i32,
encoded: u32,
}
let tests = [
Test{decoded: 0, encoded: 0},
Test{decoded: -1, encoded: 1},
Test{decoded: 1, encoded: 2},
Test{decoded: -2, encoded: 3},
Test{decoded: 2147483647, encoded: 4294967294},
Test{decoded: -2147483648, encoded: 4294967295},
];
for test in &tests {
assert_eq!(test.encoded, zigzag32(test.decoded));
assert_eq!(test.decoded, unzigzag32(test.encoded));
}
}
#[test]
fn test_correct_varints() {
struct Test {
decoded: u32,
encoded: &'static [u8],
}
let tests = [
Test{decoded: 1, encoded: b"\x01"},
Test{decoded: 257, encoded: b"\x81\x02"},
Test{decoded: 49409, encoded: b"\x81\x82\x03"},
Test{decoded: 8438017, encoded: b"\x81\x82\x83\x04"},
Test{decoded: 1350615297, encoded: b"\x81\x82\x83\x84\x05"},
];
for test in &tests {
// Test encoding to an empty buffer.
let mut out = Vec::new();
append_varint32(test.decoded, &mut out);
assert_eq!(&out[..], test.encoded);
// ...and to a non-empty buffer.
let mut buf = Vec::new();
out.clear();
out.push(b'x');
buf.push(b'x');
buf.extend_from_slice(test.encoded);
append_varint32(test.decoded, &mut out);
assert_eq!(out, buf);
// Test decoding from the beginning of the string.
assert_eq!((test.decoded, test.encoded.len()),
decode_varint32(test.encoded, 0).unwrap());
// ...and from the middle of a buffer.
buf.push(b'x');
assert_eq!((test.decoded, test.encoded.len() + 1),
decode_varint32(&buf, 1).unwrap());
}
}
#[test]
fn test_display_duration() {
let tests = &[
// (output, seconds)
("0 seconds", 0),
("1 second", 1),
("1 minute", 60),
("1 minute 1 second", 61),
("2 minutes", 120),
("1 hour", 3600),
("1 hour 1 minute", 3660),
("2 hours", 7200),
("1 day", 86400),
("1 day 1 hour", 86400 + 3600),
("2 days", 2 * 86400),
];
for test in tests {
assert_eq!(test.0, format!("{}", Duration(test.1 * TIME_UNITS_PER_SEC)));
}
}
#[test]
fn test_bad_varints() {
let tests: &[&[u8]] = &[
// buffer underruns
b"",
b"\x80",
b"\x80\x80",
b"\x80\x80\x80",
b"\x80\x80\x80\x80",
// int32 overflows
b"\x80\x80\x80\x80\x80",
b"\x80\x80\x80\x80\x80\x00",
];
for (i, encoded) in tests.iter().enumerate() {
assert!(decode_varint32(encoded, 0).is_err(), "while on test {}", i);
}
}
/// Tests encoding the example from design/schema.md.
#[test]
fn test_encode_example() {
let mut e = SampleIndexEncoder::new();
e.add_sample(10, 1000, true);
e.add_sample(9, 10, false);
e.add_sample(11, 15, false);
e.add_sample(10, 12, false);
e.add_sample(10, 1050, true);
assert_eq!(e.video_index, b"\x29\xd0\x0f\x02\x14\x08\x0a\x02\x05\x01\x64");
assert_eq!(10 + 9 + 11 + 10 + 10, e.total_duration_90k);
assert_eq!(5, e.video_samples);
assert_eq!(2, e.video_sync_samples);
}
/// Tests a round trip from `SampleIndexEncoder` to `SampleIndexIterator`.
#[test]
fn test_round_trip() {
#[derive(Debug, PartialEq, Eq)]
struct Sample {
duration_90k: i32,
bytes: i32,
is_key: bool,
}
let samples = [
Sample{duration_90k: 10, bytes: 30000, is_key: true},
Sample{duration_90k: 9, bytes: 1000, is_key: false},
Sample{duration_90k: 11, bytes: 1100, is_key: false},
Sample{duration_90k: 18, bytes: 31000, is_key: true},
Sample{duration_90k: 0, bytes: 1000, is_key: false},
];
let mut e = SampleIndexEncoder::new();
for sample in &samples {
e.add_sample(sample.duration_90k, sample.bytes, sample.is_key);
}
let mut it = SampleIndexIterator::new();
for sample in &samples {
assert!(it.next(&e.video_index).unwrap());
assert_eq!(sample,
&Sample{duration_90k: it.duration_90k, bytes: it.bytes, is_key: it.is_key});
}
assert!(!it.next(&e.video_index).unwrap());
}
/// Tests that `SampleIndexIterator` spots several classes of errors.
/// TODO: test and fix overflow cases.
#[test]
fn test_iterator_errors() {
struct Test {
encoded: &'static [u8],
err: &'static str,
}
let tests = [
Test{encoded: b"\x80", err: "bad varint 1 at offset 0"},
Test{encoded: b"\x00\x80", err: "bad varint 2 at offset 1"},
Test{encoded: b"\x00\x02\x00\x00",
err: "zero duration only allowed at end; have 2 bytes left"},
Test{encoded: b"\x02\x02",
err: "negative duration -1 after applying delta -1"},
Test{encoded: b"\x04\x00",
err: "non-positive bytes 0 after applying delta 0 to key=false frame at ts 0"},
];
for test in &tests {
let mut it = SampleIndexIterator::new();
assert_eq!(it.next(test.encoded).unwrap_err().description, test.err);
}
}
/// Tests that a `Segment` correctly can clip at the beginning and end.
/// This is a simpler case; all sync samples means we can start on any frame.
#[test]
fn test_segment_clipping_with_all_sync() {
let mut encoder = SampleIndexEncoder::new();
for i in 1..6 {
let duration_90k = 2 * i;
let bytes = 3 * i;
encoder.add_sample(duration_90k, bytes, true);
}
let db = TestDb::new();
let row = db.create_recording_from_encoder(encoder);
// Time range [2, 2 + 4 + 6 + 8) means the 2nd, 3rd, 4th samples should be
// included.
let segment = Segment::new(&db.db.lock(), &row, 2 .. 2+4+6+8).unwrap();
let mut v = Vec::new();
segment.foreach(&db.db, |it| { v.push(it.duration_90k); Ok(()) }).unwrap();
assert_eq!(&v, &[4, 6, 8]);
}
/// Half sync frames means starting from the last sync frame <= desired point.
#[test]
fn test_segment_clipping_with_half_sync() {
let mut encoder = SampleIndexEncoder::new();
for i in 1..6 {
let duration_90k = 2 * i;
let bytes = 3 * i;
encoder.add_sample(duration_90k, bytes, (i % 2) == 1);
}
let db = TestDb::new();
let row = db.create_recording_from_encoder(encoder);
// Time range [2 + 4 + 6, 2 + 4 + 6 + 8) means the 4th sample should be included.
// The 3rd also gets pulled in because it is a sync frame and the 4th is not.
let segment = Segment::new(&db.db.lock(), &row, 2+4+6 .. 2+4+6+8).unwrap();
let mut v = Vec::new();
segment.foreach(&db.db, |it| { v.push(it.duration_90k); Ok(()) }).unwrap();
assert_eq!(&v, &[6, 8]);
}
#[test]
fn test_segment_clipping_with_trailing_zero() {
let mut encoder = SampleIndexEncoder::new();
encoder.add_sample(1, 1, true);
encoder.add_sample(1, 2, true);
encoder.add_sample(0, 3, true);
let db = TestDb::new();
let row = db.create_recording_from_encoder(encoder);
let segment = Segment::new(&db.db.lock(), &row, 1 .. 2).unwrap();
let mut v = Vec::new();
segment.foreach(&db.db, |it| { v.push(it.bytes); Ok(()) }).unwrap();
assert_eq!(&v, &[2, 3]);
}
/// Test a `Segment` which uses the whole recording.
/// This takes a fast path which skips scanning the index in `new()`.
#[test]
fn test_segment_fast_path() {
let mut encoder = SampleIndexEncoder::new();
for i in 1..6 {
let duration_90k = 2 * i;
let bytes = 3 * i;
encoder.add_sample(duration_90k, bytes, (i % 2) == 1);
}
let db = TestDb::new();
let row = db.create_recording_from_encoder(encoder);
let segment = Segment::new(&db.db.lock(), &row, 0 .. 2+4+6+8+10).unwrap();
let mut v = Vec::new();
segment.foreach(&db.db, |it| { v.push(it.duration_90k); Ok(()) }).unwrap();
assert_eq!(&v, &[2, 4, 6, 8, 10]);
}
#[test]
fn test_segment_fast_path_with_trailing_zero() {
let mut encoder = SampleIndexEncoder::new();
encoder.add_sample(1, 1, true);
encoder.add_sample(1, 2, true);
encoder.add_sample(0, 3, true);
let db = TestDb::new();
let row = db.create_recording_from_encoder(encoder);
let segment = Segment::new(&db.db.lock(), &row, 0 .. 2).unwrap();
let mut v = Vec::new();
segment.foreach(&db.db, |it| { v.push(it.bytes); Ok(()) }).unwrap();
assert_eq!(&v, &[1, 2, 3]);
}
// TODO: test segment error cases involving mismatch between row frames/key_frames and index.
/// Benchmarks the decoder, which is performance-critical for .mp4 serving.
#[bench]
fn bench_decoder(b: &mut Bencher) {
let data = include_bytes!("testdata/video_sample_index.bin");
b.bytes = data.len() as u64;
b.iter(|| {
let mut it = SampleIndexIterator::new();
while it.next(data).unwrap() {}
assert_eq!(30104460, it.pos);
assert_eq!(5399985, it.start_90k);
});
}
}