moonfire-nvr/server/db/coding.rs

214 lines
5.9 KiB
Rust

// This file is part of Moonfire NVR, a security camera network video recorder.
// Copyright (C) 2016 The Moonfire NVR Authors; see AUTHORS and LICENSE.txt.
// SPDX-License-Identifier: GPL-v3.0-or-later WITH GPL-3.0-linking-exception.
//! Binary encoding/decoding.
/// Zigzag-encodes a signed integer, as in [protocol buffer
/// encoding](https://developers.google.com/protocol-buffers/docs/encoding#types). Uses the low bit
/// to indicate signedness (1 = negative, 0 = non-negative).
#[inline(always)]
pub fn zigzag32(i: i32) -> u32 {
((i << 1) as u32) ^ ((i >> 31) as u32)
}
/// Zigzag-decodes to a signed integer.
/// See `zigzag`.
#[inline(always)]
pub fn unzigzag32(i: u32) -> i32 {
((i >> 1) as i32) ^ -((i & 1) as i32)
}
#[inline(always)]
pub fn decode_varint32(data: &[u8], i: usize) -> Result<(u32, usize), ()> {
// Unroll a few likely possibilities before going into the robust out-of-line loop.
// This aids branch prediction.
if data.len() > i && (data[i] & 0x80) == 0 {
return Ok((data[i] as u32, i + 1));
} else if data.len() > i + 1 && (data[i + 1] & 0x80) == 0 {
return Ok((
((data[i] & 0x7f) as u32) | ((data[i + 1] as u32) << 7),
i + 2,
));
} else if data.len() > i + 2 && (data[i + 2] & 0x80) == 0 {
return Ok((
((data[i] & 0x7f) as u32)
| (((data[i + 1] & 0x7f) as u32) << 7)
| ((data[i + 2] as u32) << 14),
i + 3,
));
}
decode_varint32_slow(data, i)
}
#[cold]
fn decode_varint32_slow(data: &[u8], mut i: usize) -> Result<(u32, usize), ()> {
let l = data.len();
let mut out = 0;
let mut shift = 0;
loop {
if i == l {
return Err(());
}
let b = data[i];
if shift == 28 && (b & 0xf0) != 0 {
return Err(());
}
out |= ((b & 0x7f) as u32) << shift;
shift += 7;
i += 1;
if (b & 0x80) == 0 {
break;
}
}
Ok((out, i))
}
pub fn append_varint32(i: u32, data: &mut Vec<u8>) {
if i < 1u32 << 7 {
data.push(i as u8);
} else if i < 1u32 << 14 {
data.extend_from_slice(&[((i & 0x7F) | 0x80) as u8, (i >> 7) as u8]);
} else if i < 1u32 << 21 {
data.extend_from_slice(&[
((i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(i >> 14) as u8,
]);
} else if i < 1u32 << 28 {
data.extend_from_slice(&[
((i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(((i >> 14) & 0x7F) | 0x80) as u8,
(i >> 21) as u8,
]);
} else {
data.extend_from_slice(&[
((i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(((i >> 14) & 0x7F) | 0x80) as u8,
(((i >> 21) & 0x7F) | 0x80) as u8,
(i >> 28) as u8,
]);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_zigzag() {
struct Test {
decoded: i32,
encoded: u32,
}
let tests = [
Test {
decoded: 0,
encoded: 0,
},
Test {
decoded: -1,
encoded: 1,
},
Test {
decoded: 1,
encoded: 2,
},
Test {
decoded: -2,
encoded: 3,
},
Test {
decoded: 2147483647,
encoded: 4294967294,
},
Test {
decoded: -2147483648,
encoded: 4294967295,
},
];
for test in &tests {
assert_eq!(test.encoded, zigzag32(test.decoded));
assert_eq!(test.decoded, unzigzag32(test.encoded));
}
}
#[test]
fn test_correct_varints() {
struct Test {
decoded: u32,
encoded: &'static [u8],
}
let tests = [
Test {
decoded: 1,
encoded: b"\x01",
},
Test {
decoded: 257,
encoded: b"\x81\x02",
},
Test {
decoded: 49409,
encoded: b"\x81\x82\x03",
},
Test {
decoded: 8438017,
encoded: b"\x81\x82\x83\x04",
},
Test {
decoded: 1350615297,
encoded: b"\x81\x82\x83\x84\x05",
},
];
for test in &tests {
// Test encoding to an empty buffer.
let mut out = Vec::new();
append_varint32(test.decoded, &mut out);
assert_eq!(&out[..], test.encoded);
// ...and to a non-empty buffer.
let mut buf = Vec::new();
out.clear();
out.push(b'x');
buf.push(b'x');
buf.extend_from_slice(test.encoded);
append_varint32(test.decoded, &mut out);
assert_eq!(out, buf);
// Test decoding from the beginning of the string.
assert_eq!(
(test.decoded, test.encoded.len()),
decode_varint32(test.encoded, 0).unwrap()
);
// ...and from the middle of a buffer.
buf.push(b'x');
assert_eq!(
(test.decoded, test.encoded.len() + 1),
decode_varint32(&buf, 1).unwrap()
);
}
}
#[test]
fn test_bad_varints() {
let tests: &[&[u8]] = &[
// buffer underruns
b"",
b"\x80",
b"\x80\x80",
b"\x80\x80\x80",
b"\x80\x80\x80\x80",
// int32 overflows
b"\x80\x80\x80\x80\x80",
b"\x80\x80\x80\x80\x80\x00",
];
for (i, encoded) in tests.iter().enumerate() {
assert!(decode_varint32(encoded, 0).is_err(), "while on test {}", i);
}
}
}