moonfire-nvr/server/db/coding.rs
Scott Lamb dd66c7b0dd restructure into "server" and "ui" subdirs
Besides being more clear about what belongs to which, this helps with
docker caching. The server and ui parts are only rebuilt when their
respective subdirectories change.

Extend this a bit further by making the webpack build not depend on
the target architecture. And adding cache dirs so parts of the server
and ui build process can be reused when layer-wide caching fails.
2021-01-22 22:01:17 -08:00

193 lines
7.0 KiB
Rust

// This file is part of Moonfire NVR, a security camera network video recorder.
// Copyright (C) 2016 The Moonfire NVR Authors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// In addition, as a special exception, the copyright holders give
// permission to link the code of portions of this program with the
// OpenSSL library under certain conditions as described in each
// individual source file, and distribute linked combinations including
// the two.
//
// You must obey the GNU General Public License in all respects for all
// of the code used other than OpenSSL. If you modify file(s) with this
// exception, you may extend this exception to your version of the
// file(s), but you are not obligated to do so. If you do not wish to do
// so, delete this exception statement from your version. If you delete
// this exception statement from all source files in the program, then
// also delete it here.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//! Binary encoding/decoding.
/// Zigzag-encodes a signed integer, as in [protocol buffer
/// encoding](https://developers.google.com/protocol-buffers/docs/encoding#types). Uses the low bit
/// to indicate signedness (1 = negative, 0 = non-negative).
#[inline(always)]
pub fn zigzag32(i: i32) -> u32 { ((i << 1) as u32) ^ ((i >> 31) as u32) }
/// Zigzag-decodes to a signed integer.
/// See `zigzag`.
#[inline(always)]
pub fn unzigzag32(i: u32) -> i32 { ((i >> 1) as i32) ^ -((i & 1) as i32) }
#[inline(always)]
pub fn decode_varint32(data: &[u8], i: usize) -> Result<(u32, usize), ()> {
// Unroll a few likely possibilities before going into the robust out-of-line loop.
// This aids branch prediction.
if data.len() > i && (data[i] & 0x80) == 0 {
return Ok((data[i] as u32, i+1))
} else if data.len() > i + 1 && (data[i+1] & 0x80) == 0 {
return Ok((( (data[i] & 0x7f) as u32) |
(( data[i+1] as u32) << 7),
i+2))
} else if data.len() > i + 2 && (data[i+2] & 0x80) == 0 {
return Ok((( (data[i] & 0x7f) as u32) |
(((data[i+1] & 0x7f) as u32) << 7) |
(( data[i+2] as u32) << 14),
i+3))
}
decode_varint32_slow(data, i)
}
#[cold]
fn decode_varint32_slow(data: &[u8], mut i: usize) -> Result<(u32, usize), ()> {
let l = data.len();
let mut out = 0;
let mut shift = 0;
loop {
if i == l {
return Err(())
}
let b = data[i];
if shift == 28 && (b & 0xf0) != 0 {
return Err(())
}
out |= ((b & 0x7f) as u32) << shift;
shift += 7;
i += 1;
if (b & 0x80) == 0 {
break;
}
}
Ok((out, i))
}
pub fn append_varint32(i: u32, data: &mut Vec<u8>) {
if i < 1u32 << 7 {
data.push(i as u8);
} else if i < 1u32 << 14 {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(i >> 7) as u8]);
} else if i < 1u32 << 21 {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(i >> 14) as u8]);
} else if i < 1u32 << 28 {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(((i >> 14) & 0x7F) | 0x80) as u8,
(i >> 21) as u8]);
} else {
data.extend_from_slice(&[(( i & 0x7F) | 0x80) as u8,
(((i >> 7) & 0x7F) | 0x80) as u8,
(((i >> 14) & 0x7F) | 0x80) as u8,
(((i >> 21) & 0x7F) | 0x80) as u8,
(i >> 28) as u8]);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_zigzag() {
struct Test {
decoded: i32,
encoded: u32,
}
let tests = [
Test{decoded: 0, encoded: 0},
Test{decoded: -1, encoded: 1},
Test{decoded: 1, encoded: 2},
Test{decoded: -2, encoded: 3},
Test{decoded: 2147483647, encoded: 4294967294},
Test{decoded: -2147483648, encoded: 4294967295},
];
for test in &tests {
assert_eq!(test.encoded, zigzag32(test.decoded));
assert_eq!(test.decoded, unzigzag32(test.encoded));
}
}
#[test]
fn test_correct_varints() {
struct Test {
decoded: u32,
encoded: &'static [u8],
}
let tests = [
Test{decoded: 1, encoded: b"\x01"},
Test{decoded: 257, encoded: b"\x81\x02"},
Test{decoded: 49409, encoded: b"\x81\x82\x03"},
Test{decoded: 8438017, encoded: b"\x81\x82\x83\x04"},
Test{decoded: 1350615297, encoded: b"\x81\x82\x83\x84\x05"},
];
for test in &tests {
// Test encoding to an empty buffer.
let mut out = Vec::new();
append_varint32(test.decoded, &mut out);
assert_eq!(&out[..], test.encoded);
// ...and to a non-empty buffer.
let mut buf = Vec::new();
out.clear();
out.push(b'x');
buf.push(b'x');
buf.extend_from_slice(test.encoded);
append_varint32(test.decoded, &mut out);
assert_eq!(out, buf);
// Test decoding from the beginning of the string.
assert_eq!((test.decoded, test.encoded.len()),
decode_varint32(test.encoded, 0).unwrap());
// ...and from the middle of a buffer.
buf.push(b'x');
assert_eq!((test.decoded, test.encoded.len() + 1),
decode_varint32(&buf, 1).unwrap());
}
}
#[test]
fn test_bad_varints() {
let tests: &[&[u8]] = &[
// buffer underruns
b"",
b"\x80",
b"\x80\x80",
b"\x80\x80\x80",
b"\x80\x80\x80\x80",
// int32 overflows
b"\x80\x80\x80\x80\x80",
b"\x80\x80\x80\x80\x80\x00",
];
for (i, encoded) in tests.iter().enumerate() {
assert!(decode_varint32(encoded, 0).is_err(), "while on test {}", i);
}
}
}