moonfire-nvr/server/base/strutil.rs
Scott Lamb dd66c7b0dd restructure into "server" and "ui" subdirs
Besides being more clear about what belongs to which, this helps with
docker caching. The server and ui parts are only rebuilt when their
respective subdirectories change.

Extend this a bit further by making the webpack build not depend on
the target architecture. And adding cache dirs so parts of the server
and ui build process can be reused when layer-wide caching fails.
2021-01-22 22:01:17 -08:00

153 lines
5.0 KiB
Rust

// This file is part of Moonfire NVR, a security camera network video recorder.
// Copyright (C) 2016 The Moonfire NVR Authors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// In addition, as a special exception, the copyright holders give
// permission to link the code of portions of this program with the
// OpenSSL library under certain conditions as described in each
// individual source file, and distribute linked combinations including
// the two.
//
// You must obey the GNU General Public License in all respects for all
// of the code used other than OpenSSL. If you modify file(s) with this
// exception, you may extend this exception to your version of the
// file(s), but you are not obligated to do so. If you do not wish to do
// so, delete this exception statement from your version. If you delete
// this exception statement from all source files in the program, then
// also delete it here.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
use nom::IResult;
use nom::branch::alt;
use nom::bytes::complete::{tag, take_while1};
use nom::character::complete::space0;
use nom::combinator::{map, map_res, opt};
use nom::sequence::{delimited, tuple};
use std::fmt::Write as _;
static MULTIPLIERS: [(char, u64); 4] = [
// (suffix character, power of 2)
('T', 40),
('G', 30),
('M', 20),
('K', 10),
];
/// Encodes a non-negative size into human-readable form.
pub fn encode_size(mut raw: i64) -> String {
let mut encoded = String::new();
for &(c, n) in &MULTIPLIERS {
if raw >= 1i64<<n {
write!(&mut encoded, "{}{} ", raw >> n, c).unwrap();
raw &= (1i64 << n) - 1;
}
}
if raw > 0 || encoded.len() == 0 {
write!(&mut encoded, "{}", raw).unwrap();
} else {
encoded.pop(); // remove trailing space.
}
encoded
}
fn decode_sizepart(input: &str) -> IResult<&str, i64> {
map(
tuple((
map_res(take_while1(|c: char| c.is_ascii_digit()),
|input: &str| i64::from_str_radix(input, 10)),
opt(alt((
nom::combinator::value(1<<40, tag("T")),
nom::combinator::value(1<<30, tag("G")),
nom::combinator::value(1<<20, tag("M")),
nom::combinator::value(1<<10, tag("K"))
)))
)),
|(n, opt_unit)| n * opt_unit.unwrap_or(1)
)(input)
}
fn decode_size_internal(input: &str) -> IResult<&str, i64> {
nom::multi::fold_many1(
delimited(space0, decode_sizepart, space0),
0,
|sum, i| sum + i)(input)
}
/// Decodes a human-readable size as output by encode_size.
pub fn decode_size(encoded: &str) -> Result<i64, ()> {
let (remaining, decoded) = decode_size_internal(encoded).map_err(|_e| ())?;
if !remaining.is_empty() {
return Err(());
}
Ok(decoded)
}
/// Returns a hex-encoded version of the input.
pub fn hex(raw: &[u8]) -> String {
const HEX_CHARS: [u8; 16] = [b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7',
b'8', b'9', b'a', b'b', b'c', b'd', b'e', b'f'];
let mut hex = Vec::with_capacity(2 * raw.len());
for b in raw {
hex.push(HEX_CHARS[((b & 0xf0) >> 4) as usize]);
hex.push(HEX_CHARS[( b & 0x0f ) as usize]);
}
unsafe { String::from_utf8_unchecked(hex) }
}
/// Returns [0, 16) or error.
fn dehex_byte(hex_byte: u8) -> Result<u8, ()> {
match hex_byte {
b'0' ..= b'9' => Ok(hex_byte - b'0'),
b'a' ..= b'f' => Ok(hex_byte - b'a' + 10),
_ => Err(()),
}
}
/// Returns a 20-byte raw form of the given hex string.
/// (This is the size of a SHA1 hash, the only current use of this function.)
pub fn dehex(hexed: &[u8]) -> Result<[u8; 20], ()> {
if hexed.len() != 40 {
return Err(());
}
let mut out = [0; 20];
for i in 0..20 {
out[i] = (dehex_byte(hexed[i<<1])? << 4) + dehex_byte(hexed[(i<<1) + 1])?;
}
Ok(out)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_decode() {
assert_eq!(super::decode_size("100M").unwrap(), 100i64 << 20);
assert_eq!(super::decode_size("100M 42").unwrap(), (100i64 << 20) + 42);
}
#[test]
fn round_trip() {
let s = "de382684a471f178e4e3a163762711b0653bfd83";
let dehexed = dehex(s.as_bytes()).unwrap();
assert_eq!(&hex(&dehexed[..]), s);
}
#[test]
fn dehex_errors() {
dehex(b"").unwrap_err();
dehex(b"de382684a471f178e4e3a163762711b0653bfd8g").unwrap_err();
}
}