// This file is part of Moonfire NVR, a security camera network video recorder.
// Copyright (C) 2018 The Moonfire NVR Authors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// In addition, as a special exception, the copyright holders give
// permission to link the code of portions of this program with the
// OpenSSL library under certain conditions as described in each
// individual source file, and distribute linked combinations including
// the two.
//
// You must obey the GNU General Public License in all respects for all
// of the code used other than OpenSSL. If you modify file(s) with this
// exception, you may extend this exception to your version of the
// file(s), but you are not obligated to do so. If you do not wish to do
// so, delete this exception statement from your version. If you delete
// this exception statement from all source files in the program, then
// also delete it here.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//! Sample file directory management.
//!
//! This includes opening files for serving, rotating away old files, and saving new files.
use base::clock::{self, Clocks};
use crate::db::{self, CompositeId};
use crate::dir;
use crate::recording;
use failure::{Error, bail, format_err};
use fnv::FnvHashMap;
use parking_lot::Mutex;
use log::{debug, trace, warn};
use openssl::hash;
use std::cmp::Ordering;
use std::cmp;
use std::io;
use std::mem;
use std::sync::Arc;
use std::sync::mpsc;
use std::thread;
use std::time::Duration as StdDuration;
use time::{Duration, Timespec};
pub trait DirWriter : 'static + Send {
type File : FileWriter;
fn create_file(&self, id: CompositeId) -> Result;
fn sync(&self) -> Result<(), nix::Error>;
fn unlink_file(&self, id: CompositeId) -> Result<(), nix::Error>;
}
pub trait FileWriter : 'static {
/// As in `std::fs::File::sync_all`.
fn sync_all(&self) -> Result<(), io::Error>;
/// As in `std::io::Writer::write`.
fn write(&mut self, buf: &[u8]) -> Result;
}
impl DirWriter for Arc {
type File = ::std::fs::File;
fn create_file(&self, id: CompositeId) -> Result {
dir::SampleFileDir::create_file(self, id)
}
fn sync(&self) -> Result<(), nix::Error> { dir::SampleFileDir::sync(self) }
fn unlink_file(&self, id: CompositeId) -> Result<(), nix::Error> {
dir::SampleFileDir::unlink_file(self, id)
}
}
impl FileWriter for ::std::fs::File {
fn sync_all(&self) -> Result<(), io::Error> { self.sync_all() }
fn write(&mut self, buf: &[u8]) -> Result { io::Write::write(self, buf) }
}
/// A command sent to the syncer. These correspond to methods in the `SyncerChannel` struct.
enum SyncerCommand {
AsyncSaveRecording(CompositeId, recording::Duration, F),
DatabaseFlushed,
Flush(mpsc::SyncSender<()>),
}
/// A channel which can be used to send commands to the syncer.
/// Can be cloned to allow multiple threads to send commands.
pub struct SyncerChannel(mpsc::Sender>);
impl ::std::clone::Clone for SyncerChannel {
fn clone(&self) -> Self { SyncerChannel(self.0.clone()) }
}
/// State of the worker thread.
struct Syncer {
dir_id: i32,
dir: D,
db: Arc>,
planned_flushes: std::collections::BinaryHeap,
}
struct PlannedFlush {
/// Monotonic time at which this flush should happen.
when: Timespec,
/// Recording which prompts this flush. If this recording is already flushed at the planned
/// time, it can be skipped.
recording: CompositeId,
/// A human-readable reason for the flush, for logs.
reason: String,
/// Senders to drop when this time is reached. This is for test instrumentation; see
/// `SyncerChannel::flush`.
senders: Vec>,
}
// PlannedFlush is meant for placement in a max-heap which should return the soonest flush. This
// PlannedFlush is greater than other if its when is _less_ than the other's.
impl Ord for PlannedFlush {
fn cmp(&self, other: &Self) -> Ordering {
other.when.cmp(&self.when)
}
}
impl PartialOrd for PlannedFlush {
fn partial_cmp(&self, other: &Self) -> Option {
Some(self.cmp(other))
}
}
impl PartialEq for PlannedFlush {
fn eq(&self, other: &Self) -> bool {
self.when == other.when
}
}
impl Eq for PlannedFlush {}
/// Starts a syncer for the given sample file directory.
///
/// The lock must not be held on `db` when this is called.
///
/// There should be only one syncer per directory, or 0 if operating in read-only mode.
/// This function will perform the initial rotation synchronously, so that it is finished before
/// file writing starts. Afterward the syncing happens in a background thread.
///
/// Returns a `SyncerChannel` which can be used to send commands (and can be cloned freely) and
/// a `JoinHandle` for the syncer thread. Commands sent on the channel will be executed or retried
/// forever. (TODO: provide some manner of pushback during retry.) At program shutdown, all
/// `SyncerChannel` clones should be dropped and then the handle joined to allow all recordings to
/// be persisted.
///
/// Note that dropping all `SyncerChannel` clones currently includes calling
/// `LockedDatabase::clear_on_flush`, as this function installs a hook to watch database flushes.
/// TODO: add a join wrapper which arranges for the on flush hook to be removed automatically.
pub fn start_syncer(db: Arc>, dir_id: i32)
-> Result<(SyncerChannel<::std::fs::File>, thread::JoinHandle<()>), Error>
where C: Clocks + Clone {
let db2 = db.clone();
let (mut syncer, path) = Syncer::new(&db.lock(), db2, dir_id)?;
syncer.initial_rotation()?;
let (snd, rcv) = mpsc::channel();
db.lock().on_flush(Box::new({
let snd = snd.clone();
move || if let Err(e) = snd.send(SyncerCommand::DatabaseFlushed) {
warn!("Unable to notify syncer for dir {} of flush: {}", dir_id, e);
}
}));
Ok((SyncerChannel(snd),
thread::Builder::new()
.name(format!("sync-{}", path))
.spawn(move || { while syncer.iter(&rcv) {} }).unwrap()))
}
pub struct NewLimit {
pub stream_id: i32,
pub limit: i64,
}
/// Deletes recordings if necessary to fit within the given new `retain_bytes` limit.
/// Note this doesn't change the limit in the database; it only deletes files.
/// Pass a limit of 0 to delete all recordings associated with a camera.
pub fn lower_retention(db: Arc, dir_id: i32, limits: &[NewLimit])
-> Result<(), Error> {
let db2 = db.clone();
let (mut syncer, _) = Syncer::new(&db.lock(), db2, dir_id)?;
syncer.do_rotation(|db| {
for l in limits {
let (bytes_before, extra);
{
let stream = db.streams_by_id().get(&l.stream_id)
.ok_or_else(|| format_err!("no such stream {}", l.stream_id))?;
bytes_before = stream.sample_file_bytes + stream.bytes_to_add -
stream.bytes_to_delete;
extra = stream.retain_bytes - l.limit;
}
if l.limit >= bytes_before { continue }
delete_recordings(db, l.stream_id, extra)?;
}
Ok(())
})
}
/// Deletes recordings to bring a stream's disk usage within bounds.
fn delete_recordings(db: &mut db::LockedDatabase, stream_id: i32,
extra_bytes_needed: i64) -> Result<(), Error> {
let bytes_needed = {
let stream = match db.streams_by_id().get(&stream_id) {
None => bail!("no stream {}", stream_id),
Some(s) => s,
};
stream.sample_file_bytes + stream.bytes_to_add - stream.bytes_to_delete + extra_bytes_needed
- stream.retain_bytes
};
let mut bytes_to_delete = 0;
if bytes_needed <= 0 {
debug!("{}: have remaining quota of {}", stream_id, -bytes_needed);
return Ok(());
}
let mut n = 0;
db.delete_oldest_recordings(stream_id, &mut |row| {
if bytes_needed >= bytes_to_delete {
bytes_to_delete += row.sample_file_bytes as i64;
n += 1;
return true;
}
false
})?;
Ok(())
}
impl SyncerChannel {
/// Asynchronously syncs the given writer, closes it, records it into the database, and
/// starts rotation.
fn async_save_recording(&self, id: CompositeId, duration: recording::Duration, f: F) {
self.0.send(SyncerCommand::AsyncSaveRecording(id, duration, f)).unwrap();
}
/// For testing: flushes the syncer, waiting for all currently-queued commands to complete,
/// including the next scheduled database flush (if any). Note this doesn't wait for any
/// post-database flush garbage collection.
pub fn flush(&self) {
let (snd, rcv) = mpsc::sync_channel(0);
self.0.send(SyncerCommand::Flush(snd)).unwrap();
rcv.recv().unwrap_err(); // syncer should just drop the channel, closing it.
}
}
/// Lists files which should be "abandoned" (deleted without ever recording in the database)
/// on opening.
fn list_files_to_abandon(dir: &dir::SampleFileDir, streams_to_next: FnvHashMap)
-> Result, Error> {
let mut v = Vec::new();
let mut d = dir.opendir()?;
for e in d.iter() {
let e = e?;
let id = match dir::parse_id(e.file_name().to_bytes()) {
Ok(i) => i,
Err(_) => continue,
};
let next = match streams_to_next.get(&id.stream()) {
Some(n) => *n,
None => continue, // unknown stream.
};
if id.recording() >= next {
v.push(id);
}
}
Ok(v)
}
impl Syncer> {
fn new(l: &db::LockedDatabase, db: Arc>, dir_id: i32)
-> Result<(Self, String), Error> {
let d = l.sample_file_dirs_by_id()
.get(&dir_id)
.ok_or_else(|| format_err!("no dir {}", dir_id))?;
let dir = d.get()?;
// Abandon files.
// First, get a list of the streams in question.
let streams_to_next: FnvHashMap<_, _> =
l.streams_by_id()
.iter()
.filter_map(|(&k, v)| {
if v.sample_file_dir_id == Some(dir_id) {
Some((k, v.next_recording_id))
} else {
None
}
})
.collect();
let to_abandon = list_files_to_abandon(&dir, streams_to_next)?;
let mut undeletable = 0;
for &id in &to_abandon {
if let Err(e) = dir.unlink_file(id) {
if e == nix::Error::Sys(nix::errno::Errno::ENOENT) {
warn!("dir: abandoned recording {} already deleted!", id);
} else {
warn!("dir: Unable to unlink abandoned recording {}: {}", id, e);
undeletable += 1;
}
}
}
if undeletable > 0 {
bail!("Unable to delete {} abandoned recordings.", undeletable);
}
Ok((Syncer {
dir_id,
dir,
db,
planned_flushes: std::collections::BinaryHeap::new(),
}, d.path.clone()))
}
/// Rotates files for all streams and deletes stale files from previous runs.
/// Called from main thread.
fn initial_rotation(&mut self) -> Result<(), Error> {
self.do_rotation(|db| {
let streams: Vec = db.streams_by_id().keys().map(|&id| id).collect();
for &stream_id in &streams {
delete_recordings(db, stream_id, 0)?;
}
Ok(())
})
}
/// Helper to do initial or retention-lowering rotation. Called from main thread.
fn do_rotation(&mut self, delete_recordings: F) -> Result<(), Error>
where F: Fn(&mut db::LockedDatabase) -> Result<(), Error> {
{
let mut db = self.db.lock();
delete_recordings(&mut *db)?;
db.flush("synchronous deletion")?;
}
let mut garbage: Vec<_> = {
let l = self.db.lock();
let d = l.sample_file_dirs_by_id().get(&self.dir_id).unwrap();
d.garbage_needs_unlink.iter().map(|id| *id).collect()
};
if !garbage.is_empty() {
// Try to delete files; retain ones in `garbage` that don't exist.
let mut errors = 0;
for &id in &garbage {
if let Err(e) = self.dir.unlink_file(id) {
if e != nix::Error::Sys(nix::errno::Errno::ENOENT) {
warn!("dir: Unable to unlink {}: {}", id, e);
errors += 1;
}
}
}
if errors > 0 {
bail!("Unable to unlink {} files (see earlier warning messages for details)",
errors);
}
self.dir.sync()?;
self.db.lock().delete_garbage(self.dir_id, &mut garbage)?;
self.db.lock().flush("synchronous garbage collection")?;
}
Ok(())
}
}
impl Syncer {
/// Processes a single command or timeout.
///
/// Returns true iff the loop should continue.
fn iter(&mut self, cmds: &mpsc::Receiver>) -> bool {
// Wait for a command, the next flush timeout (if specified), or channel disconnect.
let next_flush = self.planned_flushes.peek().map(|f| f.when);
let cmd = match next_flush {
None => match cmds.recv() {
Err(_) => return false, // all cmd senders are gone.
Ok(cmd) => cmd,
},
Some(t) => {
let now = self.db.clocks().monotonic();
// Calculate the timeout to use, mapping negative durations to 0.
let timeout = (t - now).to_std().unwrap_or(StdDuration::new(0, 0));
match self.db.clocks().recv_timeout(&cmds, timeout) {
Err(mpsc::RecvTimeoutError::Disconnected) => return false, // cmd senders gone.
Err(mpsc::RecvTimeoutError::Timeout) => {
self.flush();
return true;
},
Ok(cmd) => cmd,
}
},
};
// Have a command; handle it.
match cmd {
SyncerCommand::AsyncSaveRecording(id, dur, f) => self.save(id, dur, f),
SyncerCommand::DatabaseFlushed => self.collect_garbage(),
SyncerCommand::Flush(flush) => {
// The sender is waiting for the supplied writer to be dropped. If there's no
// timeout, do so immediately; otherwise wait for that timeout then drop it.
if let Some(mut f) = self.planned_flushes.peek_mut() {
f.senders.push(flush);
}
},
};
true
}
/// Collects garbage (without forcing a sync). Called from worker thread.
fn collect_garbage(&mut self) {
trace!("Collecting garbage");
let mut garbage: Vec<_> = {
let l = self.db.lock();
let d = l.sample_file_dirs_by_id().get(&self.dir_id).unwrap();
d.garbage_needs_unlink.iter().map(|id| *id).collect()
};
if garbage.is_empty() {
return;
}
let c = &self.db.clocks();
for &id in &garbage {
clock::retry_forever(c, &mut || {
if let Err(e) = self.dir.unlink_file(id) {
if e == nix::Error::Sys(nix::errno::Errno::ENOENT) {
warn!("dir: recording {} already deleted!", id);
return Ok(());
}
return Err(e);
}
Ok(())
});
}
clock::retry_forever(c, &mut || self.dir.sync());
clock::retry_forever(c, &mut || self.db.lock().delete_garbage(self.dir_id, &mut garbage));
}
/// Saves the given recording and causes rotation to happen. Called from worker thread.
///
/// Note that part of rotation is deferred for the next cycle (saved writing or program startup)
/// so that there can be only one dir sync and database transaction per save.
/// Internal helper for `save`. This is separated out so that the question-mark operator
/// can be used in the many error paths.
fn save(&mut self, id: CompositeId, duration: recording::Duration, f: D::File) {
trace!("Processing save for {}", id);
let stream_id = id.stream();
// Free up a like number of bytes.
clock::retry_forever(&self.db.clocks(), &mut || f.sync_all());
clock::retry_forever(&self.db.clocks(), &mut || self.dir.sync());
let mut db = self.db.lock();
db.mark_synced(id).unwrap();
delete_recordings(&mut db, stream_id, 0).unwrap();
let s = db.streams_by_id().get(&stream_id).unwrap();
let c = db.cameras_by_id().get(&s.camera_id).unwrap();
// Schedule a flush.
let how_soon = Duration::seconds(s.flush_if_sec) - duration.to_tm_duration();
let now = self.db.clocks().monotonic();
let when = now + how_soon;
let reason = format!("{} sec after start of {} {}-{} recording {}",
s.flush_if_sec, duration, c.short_name, s.type_.as_str(), id);
trace!("scheduling flush in {} because {}", how_soon, &reason);
self.planned_flushes.push(PlannedFlush {
when,
reason,
recording: id,
senders: Vec::new(),
});
}
/// Flushes the database if necessary to honor `flush_if_sec` for some recording.
/// Called from worker thread when one of the `planned_flushes` arrives.
fn flush(&mut self) {
trace!("Flushing");
let mut l = self.db.lock();
// Look through the planned flushes and see if any are still relevant. It's possible
// they're not because something else (e.g., a syncer for a different sample file dir)
// has flushed the database in the meantime.
use std::collections::binary_heap::PeekMut;
while let Some(f) = self.planned_flushes.peek_mut() {
let s = match l.streams_by_id().get(&f.recording.stream()) {
Some(s) => s,
None => {
// Removing streams while running hasn't been implemented yet, so this should
// be impossible.
warn!("bug: no stream for {} which was scheduled to be flushed", f.recording);
PeekMut::pop(f);
continue;
}
};
if s.next_recording_id <= f.recording.recording() { // not yet committed.
break;
}
trace!("planned flush ({}) no longer needed", &f.reason);
PeekMut::pop(f);
}
// If there's anything left to do now, try to flush.
let f = match self.planned_flushes.peek() {
None => return,
Some(f) => f,
};
let now = self.db.clocks().monotonic();
if f.when > now {
return;
}
if let Err(e) = l.flush(&f.reason) {
let d = Duration::minutes(1);
warn!("flush failure on save for reason {}; will retry after {}: {:?}",
f.reason, d, e);
self.planned_flushes.peek_mut().expect("planned_flushes is non-empty").when =
self.db.clocks().monotonic() + Duration::minutes(1);
return;
}
// A successful flush should take care of everything planned.
self.planned_flushes.clear();
}
}
/// Struct for writing a single run (of potentially several recordings) to disk and committing its
/// metadata to the database. `Writer` hands off each recording's state to the syncer when done. It
/// saves the recording to the database (if I/O errors do not prevent this), retries forever,
/// or panics (if further writing on this stream is impossible).
pub struct Writer<'a, C: Clocks + Clone, D: DirWriter> {
dir: &'a D,
db: &'a db::Database,
channel: &'a SyncerChannel,
stream_id: i32,
video_sample_entry_id: i32,
state: WriterState,
}
enum WriterState {
Unopened,
Open(InnerWriter),
Closed(PreviousWriter),
}
/// State for writing a single recording, used within `Writer`.
///
/// Note that the recording created by every `InnerWriter` must be written to the `SyncerChannel`
/// with at least one sample. The sample may have zero duration.
struct InnerWriter {
f: F,
r: Arc>,
e: recording::SampleIndexEncoder,
id: CompositeId,
/// The pts, relative to the start of this segment and in 90kHz units, up until which live
/// segments have been sent out. Initially 0.
completed_live_segment_off_90k: i32,
hasher: hash::Hasher,
/// The start time of this segment, based solely on examining the local clock after frames in
/// this segment were received. Frames can suffer from various kinds of delay (initial
/// buffering, encoding, and network transmission), so this time is set to far in the future on
/// construction, given a real value on the first packet, and decreased as less-delayed packets
/// are discovered. See design/time.md for details.
local_start: recording::Time,
adjuster: ClockAdjuster,
/// A sample which has been written to disk but not added to `index`. Index writes are one
/// sample behind disk writes because the duration of a sample is the difference between its
/// pts and the next sample's pts. A sample is flushed when the next sample is written, when
/// the writer is closed cleanly (the caller supplies the next pts), or when the writer is
/// closed uncleanly (with a zero duration, which the `.mp4` format allows only at the end).
///
/// Invariant: this should always be `Some` (briefly violated during `write` call only).
unflushed_sample: Option,
}
/// Adjusts durations given by the camera to correct its clock frequency error.
#[derive(Copy, Clone, Debug)]
struct ClockAdjuster {
/// Every `every_minus_1 + 1` units, add `-ndir`.
/// Note i32::max_value() disables adjustment.
every_minus_1: i32,
/// Should be 1 or -1 (unless disabled).
ndir: i32,
/// Keeps accumulated difference from previous values.
cur: i32,
}
impl ClockAdjuster {
fn new(local_time_delta: Option) -> Self {
// Pick an adjustment rate to correct local_time_delta over the next minute (the
// desired duration of a single recording). Cap the rate at 500 ppm (which corrects
// 2,700/90,000ths of a second over a minute) to prevent noticeably speeding up or slowing
// down playback.
let (every_minus_1, ndir) = match local_time_delta {
Some(d) if d <= -2700 => (1999, 1),
Some(d) if d >= 2700 => (1999, -1),
Some(d) if d < -60 => ((60 * 90000) / -(d as i32) - 1, 1),
Some(d) if d > 60 => ((60 * 90000) / (d as i32) - 1, -1),
_ => (i32::max_value(), 0),
};
ClockAdjuster{
every_minus_1,
ndir,
cur: 0,
}
}
fn adjust(&mut self, mut val: i32) -> i32 {
self.cur += val;
// The "val > self.ndir" here is so that if decreasing durations (ndir == 1), we don't
// cause a duration of 1 to become a duration of 0. It has no effect when increasing
// durations. (There's no danger of a duration of 0 becoming a duration of 1; cur wouldn't
// be newly > self.every_minus_1.)
while self.cur > self.every_minus_1 && val > self.ndir {
val -= self.ndir;
self.cur -= self.every_minus_1 + 1;
}
val
}
}
#[derive(Copy, Clone)]
struct UnflushedSample {
local_time: recording::Time,
pts_90k: i64, // relative to the start of the stream, not a single recording.
len: i32,
is_key: bool,
}
/// State associated with a run's previous recording; used within `Writer`.
#[derive(Copy, Clone)]
struct PreviousWriter {
end: recording::Time,
local_time_delta: recording::Duration,
run_offset: i32,
}
impl<'a, C: Clocks + Clone, D: DirWriter> Writer<'a, C, D> {
/// `db` must not be locked.
pub fn new(dir: &'a D, db: &'a db::Database, channel: &'a SyncerChannel,
stream_id: i32, video_sample_entry_id: i32) -> Self {
Writer {
dir,
db,
channel,
stream_id,
video_sample_entry_id,
state: WriterState::Unopened,
}
}
/// Opens a new writer.
/// On successful return, `self.state` will be `WriterState::Open(w)` with `w` violating the
/// invariant that `unflushed_sample` is `Some`. The caller (`write`) is responsible for
/// correcting this.
fn open(&mut self) -> Result<(), Error> {
let prev = match self.state {
WriterState::Unopened => None,
WriterState::Open(_) => return Ok(()),
WriterState::Closed(prev) => Some(prev),
};
let (id, r) = self.db.lock().add_recording(self.stream_id, db::RecordingToInsert {
run_offset: prev.map(|p| p.run_offset + 1).unwrap_or(0),
start: prev.map(|p| p.end).unwrap_or(recording::Time(i64::max_value())),
video_sample_entry_id: self.video_sample_entry_id,
flags: db::RecordingFlags::Growing as i32,
..Default::default()
})?;
let f = clock::retry_forever(&self.db.clocks(), &mut || self.dir.create_file(id));
self.state = WriterState::Open(InnerWriter {
f,
r,
e: recording::SampleIndexEncoder::new(),
id,
completed_live_segment_off_90k: 0,
hasher: hash::Hasher::new(hash::MessageDigest::sha1())?,
local_start: recording::Time(i64::max_value()),
adjuster: ClockAdjuster::new(prev.map(|p| p.local_time_delta.0)),
unflushed_sample: None,
});
Ok(())
}
pub fn previously_opened(&self) -> Result {
Ok(match self.state {
WriterState::Unopened => false,
WriterState::Closed(_) => true,
WriterState::Open(_) => bail!("open!"),
})
}
/// Writes a new frame to this segment.
/// `local_time` should be the local clock's time as of when this packet was received.
pub fn write(&mut self, pkt: &[u8], local_time: recording::Time, pts_90k: i64,
is_key: bool) -> Result<(), Error> {
self.open()?;
let w = match self.state {
WriterState::Open(ref mut w) => w,
_ => unreachable!(),
};
// Note w's invariant that `unflushed_sample` is `None` may currently be violated.
// We must restore it on all success or error paths.
if let Some(unflushed) = w.unflushed_sample.take() {
let duration = (pts_90k - unflushed.pts_90k as i64) as i32;
if duration <= 0 {
// Restore invariant.
w.unflushed_sample = Some(unflushed);
bail!("pts not monotonically increasing; got {} then {}",
unflushed.pts_90k, pts_90k);
}
let duration = w.adjuster.adjust(duration);
let d = match w.add_sample(duration, unflushed.len, unflushed.is_key,
unflushed.local_time) {
Ok(d) => d,
Err(e) => {
// Restore invariant.
w.unflushed_sample = Some(unflushed);
return Err(e);
},
};
// If the sample `write` was called on is a key frame, then the prior frames (including
// the one we just flushed) represent a live segment. Send it out.
if is_key {
self.db.lock().send_live_segment(self.stream_id, db::LiveSegment {
recording: w.id.recording(),
off_90k: w.completed_live_segment_off_90k .. d,
}).unwrap();
w.completed_live_segment_off_90k = d;
}
}
let mut remaining = pkt;
while !remaining.is_empty() {
let written = clock::retry_forever(&self.db.clocks(), &mut || w.f.write(remaining));
remaining = &remaining[written..];
}
w.unflushed_sample = Some(UnflushedSample {
local_time,
pts_90k,
len: pkt.len() as i32,
is_key,
});
w.hasher.update(pkt).unwrap();
Ok(())
}
/// Cleanly closes the writer, using a supplied pts of the next sample for the last sample's
/// duration (if known). If `close` is not called, the `Drop` trait impl will close the trait,
/// swallowing errors and using a zero duration for the last sample.
pub fn close(&mut self, next_pts: Option) -> Result<(), Error> {
self.state = match mem::replace(&mut self.state, WriterState::Unopened) {
WriterState::Open(w) => {
let prev = w.close(self.channel, next_pts, self.db, self.stream_id)?;
WriterState::Closed(prev)
},
s => s,
};
Ok(())
}
}
impl InnerWriter {
/// Returns the total duration of the `RecordingToInsert` (needed for live view path).
fn add_sample(&mut self, duration_90k: i32, bytes: i32, is_key: bool,
pkt_local_time: recording::Time) -> Result {
let mut l = self.r.lock();
self.e.add_sample(duration_90k, bytes, is_key, &mut l)?;
let new = pkt_local_time - recording::Duration(l.duration_90k as i64);
self.local_start = cmp::min(self.local_start, new);
if l.run_offset == 0 { // start time isn't anchored to previous recording's end; adjust.
l.start = self.local_start;
}
Ok(l.duration_90k)
}
fn close(mut self, channel: &SyncerChannel, next_pts: Option,
db: &db::Database, stream_id: i32) -> Result {
let unflushed = self.unflushed_sample.take().expect("should always be an unflushed sample");
let (last_sample_duration, flags) = match next_pts {
None => (self.adjuster.adjust(0), db::RecordingFlags::TrailingZero as i32),
Some(p) => (self.adjuster.adjust((p - unflushed.pts_90k) as i32), 0),
};
let mut sha1_bytes = [0u8; 20];
sha1_bytes.copy_from_slice(&self.hasher.finish().unwrap()[..]);
let (local_time_delta, run_offset, end);
let d = self.add_sample(last_sample_duration, unflushed.len, unflushed.is_key,
unflushed.local_time)?;
// This always ends a live segment.
db.lock().send_live_segment(stream_id, db::LiveSegment {
recording: self.id.recording(),
off_90k: self.completed_live_segment_off_90k .. d,
}).unwrap();
let total_duration;
{
let mut l = self.r.lock();
l.flags = flags;
local_time_delta = self.local_start - l.start;
l.local_time_delta = local_time_delta;
l.sample_file_sha1 = sha1_bytes;
total_duration = recording::Duration(l.duration_90k as i64);
run_offset = l.run_offset;
end = l.start + total_duration;
}
drop(self.r);
channel.async_save_recording(self.id, total_duration, self.f);
Ok(PreviousWriter {
end,
local_time_delta,
run_offset,
})
}
}
impl<'a, C: Clocks + Clone, D: DirWriter> Drop for Writer<'a, C, D> {
fn drop(&mut self) {
if ::std::thread::panicking() {
// This will probably panic again. Don't do it.
return;
}
if let WriterState::Open(w) = mem::replace(&mut self.state, WriterState::Unopened) {
// Swallow any error. The caller should only drop the Writer without calling close()
// if there's already been an error. The caller should report that. No point in
// complaining again.
let _ = w.close(self.channel, None, self.db, self.stream_id);
}
}
}
#[cfg(test)]
mod tests {
use base::clock::{Clocks, SimulatedClocks};
use crate::db::{self, CompositeId};
use crate::recording;
use parking_lot::Mutex;
use log::{trace, warn};
use std::collections::VecDeque;
use std::io;
use std::sync::Arc;
use std::sync::mpsc;
use super::{ClockAdjuster, Writer};
use crate::testutil;
#[derive(Clone)]
struct MockDir(Arc>>);
enum MockDirAction {
Create(CompositeId, Box Result + Send>),
Sync(Box Result<(), nix::Error> + Send>),
Unlink(CompositeId, Box Result<(), nix::Error> + Send>),
}
impl MockDir {
fn new() -> Self { MockDir(Arc::new(Mutex::new(VecDeque::new()))) }
fn expect(&self, action: MockDirAction) { self.0.lock().push_back(action); }
fn ensure_done(&self) { assert_eq!(self.0.lock().len(), 0); }
}
impl super::DirWriter for MockDir {
type File = MockFile;
fn create_file(&self, id: CompositeId) -> Result {
match self.0.lock().pop_front().expect("got create_file with no expectation") {
MockDirAction::Create(expected_id, ref f) => {
assert_eq!(id, expected_id);
f(id)
},
_ => panic!("got create_file({}), expected something else", id),
}
}
fn sync(&self) -> Result<(), nix::Error> {
match self.0.lock().pop_front().expect("got sync with no expectation") {
MockDirAction::Sync(f) => f(),
_ => panic!("got sync, expected something else"),
}
}
fn unlink_file(&self, id: CompositeId) -> Result<(), nix::Error> {
match self.0.lock().pop_front().expect("got unlink_file with no expectation") {
MockDirAction::Unlink(expected_id, f) => {
assert_eq!(id, expected_id);
f(id)
},
_ => panic!("got unlink({}), expected something else", id),
}
}
}
impl Drop for MockDir {
fn drop(&mut self) {
if !::std::thread::panicking() {
assert_eq!(self.0.lock().len(), 0);
}
}
}
#[derive(Clone)]
struct MockFile(Arc>>);
enum MockFileAction {
SyncAll(Box Result<(), io::Error> + Send>),
Write(Box Result + Send>),
}
impl MockFile {
fn new() -> Self { MockFile(Arc::new(Mutex::new(VecDeque::new()))) }
fn expect(&self, action: MockFileAction) { self.0.lock().push_back(action); }
fn ensure_done(&self) { assert_eq!(self.0.lock().len(), 0); }
}
impl super::FileWriter for MockFile {
fn sync_all(&self) -> Result<(), io::Error> {
match self.0.lock().pop_front().expect("got sync_all with no expectation") {
MockFileAction::SyncAll(f) => f(),
_ => panic!("got sync_all, expected something else"),
}
}
fn write(&mut self, buf: &[u8]) -> Result {
match self.0.lock().pop_front().expect("got write with no expectation") {
MockFileAction::Write(f) => f(buf),
_ => panic!("got write({:?}), expected something else", buf),
}
}
}
struct Harness {
db: Arc>,
dir_id: i32,
_tmpdir: ::tempdir::TempDir,
dir: MockDir,
channel: super::SyncerChannel,
syncer: super::Syncer,
syncer_rcv: mpsc::Receiver>,
}
fn new_harness(flush_if_sec: i64) -> Harness {
let clocks = SimulatedClocks::new(::time::Timespec::new(0, 0));
let tdb = testutil::TestDb::new_with_flush_if_sec(clocks, flush_if_sec);
let dir_id = *tdb.db.lock().sample_file_dirs_by_id().keys().next().unwrap();
// This starts a real fs-backed syncer. Get rid of it.
tdb.db.lock().clear_on_flush();
drop(tdb.syncer_channel);
tdb.syncer_join.join().unwrap();
// Start a mocker syncer.
let dir = MockDir::new();
let syncer = super::Syncer {
dir_id: *tdb.db.lock().sample_file_dirs_by_id().keys().next().unwrap(),
dir: dir.clone(),
db: tdb.db.clone(),
planned_flushes: std::collections::BinaryHeap::new(),
};
let (syncer_snd, syncer_rcv) = mpsc::channel();
tdb.db.lock().on_flush(Box::new({
let snd = syncer_snd.clone();
move || if let Err(e) = snd.send(super::SyncerCommand::DatabaseFlushed) {
warn!("Unable to notify syncer for dir {} of flush: {}", dir_id, e);
}
}));
Harness {
dir_id,
dir,
db: tdb.db,
_tmpdir: tdb.tmpdir,
channel: super::SyncerChannel(syncer_snd),
syncer,
syncer_rcv,
}
}
fn eio() -> io::Error { io::Error::new(io::ErrorKind::Other, "got EIO") }
fn nix_eio() -> nix::Error { nix::Error::Sys(nix::errno::Errno::EIO) }
/// Tests the database flushing while a syncer is still processing a previous flush event.
#[test]
fn double_flush() {
testutil::init();
let mut h = new_harness(0);
h.db.lock().update_retention(&[db::RetentionChange {
stream_id: testutil::TEST_STREAM_ID,
new_record: true,
new_limit: 3,
}]).unwrap();
// Setup: add a 3-byte recording.
let video_sample_entry_id = h.db.lock().insert_video_sample_entry(
1920, 1080, [0u8; 100].to_vec(), "avc1.000000".to_owned()).unwrap();
let mut w = Writer::new(&h.dir, &h.db, &h.channel, testutil::TEST_STREAM_ID,
video_sample_entry_id);
let f = MockFile::new();
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 1),
Box::new({ let f = f.clone(); move |_id| Ok(f.clone()) })));
f.expect(MockFileAction::Write(Box::new(|buf| { assert_eq!(buf, b"123"); Ok(3) })));
f.expect(MockFileAction::SyncAll(Box::new(|| Ok(()))));
w.write(b"123", recording::Time(2), 0, true).unwrap();
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
w.close(Some(1)).unwrap();
assert!(h.syncer.iter(&h.syncer_rcv)); // AsyncSave
assert_eq!(h.syncer.planned_flushes.len(), 1);
assert!(h.syncer.iter(&h.syncer_rcv)); // planned flush
assert_eq!(h.syncer.planned_flushes.len(), 0);
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
f.ensure_done();
h.dir.ensure_done();
// Then a 1-byte recording.
let f = MockFile::new();
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 2),
Box::new({ let f = f.clone(); move |_id| Ok(f.clone()) })));
f.expect(MockFileAction::Write(Box::new(|buf| { assert_eq!(buf, b"4"); Ok(1) })));
f.expect(MockFileAction::SyncAll(Box::new(|| Ok(()))));
w.write(b"4", recording::Time(3), 1, true).unwrap();
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
h.dir.expect(MockDirAction::Unlink(CompositeId::new(1, 1), Box::new({
let db = h.db.clone();
move |_| {
// The drop(w) below should cause the old recording to be deleted (moved to
// garbage). When the database is flushed, the syncer forces garbage collection
// including this unlink.
// Do another database flush here, as if from another syncer.
db.lock().flush("another syncer running").unwrap();
Ok(())
}
})));
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
drop(w);
trace!("expecting AsyncSave");
assert!(h.syncer.iter(&h.syncer_rcv)); // AsyncSave
assert_eq!(h.syncer.planned_flushes.len(), 1);
trace!("expecting planned flush");
assert!(h.syncer.iter(&h.syncer_rcv)); // planned flush
assert_eq!(h.syncer.planned_flushes.len(), 0);
trace!("expecting DatabaseFlushed");
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
trace!("expecting DatabaseFlushed again");
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed again
f.ensure_done();
h.dir.ensure_done();
// Garbage should be marked collected on the next database flush.
{
let mut l = h.db.lock();
let dir = l.sample_file_dirs_by_id().get(&h.dir_id).unwrap();
assert!(dir.garbage_needs_unlink.is_empty());
assert!(!dir.garbage_unlinked.is_empty());
l.flush("forced gc").unwrap();
let dir = l.sample_file_dirs_by_id().get(&h.dir_id).unwrap();
assert!(dir.garbage_needs_unlink.is_empty());
assert!(dir.garbage_unlinked.is_empty());
}
assert_eq!(h.syncer.planned_flushes.len(), 0);
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
// The syncer should shut down cleanly.
drop(h.channel);
h.db.lock().clear_on_flush();
assert_eq!(h.syncer_rcv.try_recv().err(),
Some(std::sync::mpsc::TryRecvError::Disconnected));
assert!(h.syncer.planned_flushes.is_empty());
}
#[test]
fn write_path_retries() {
testutil::init();
let mut h = new_harness(0);
let video_sample_entry_id = h.db.lock().insert_video_sample_entry(
1920, 1080, [0u8; 100].to_vec(), "avc1.000000".to_owned()).unwrap();
let mut w = Writer::new(&h.dir, &h.db, &h.channel, testutil::TEST_STREAM_ID,
video_sample_entry_id);
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 1), Box::new(|_id| Err(nix_eio()))));
let f = MockFile::new();
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 1),
Box::new({ let f = f.clone(); move |_id| Ok(f.clone()) })));
f.expect(MockFileAction::Write(Box::new(|buf| {
assert_eq!(buf, b"1234");
Err(eio())
})));
f.expect(MockFileAction::Write(Box::new(|buf| {
assert_eq!(buf, b"1234");
Ok(1)
})));
f.expect(MockFileAction::Write(Box::new(|buf| {
assert_eq!(buf, b"234");
Err(eio())
})));
f.expect(MockFileAction::Write(Box::new(|buf| {
assert_eq!(buf, b"234");
Ok(3)
})));
f.expect(MockFileAction::SyncAll(Box::new(|| Err(eio()))));
f.expect(MockFileAction::SyncAll(Box::new(|| Ok(()))));
w.write(b"1234", recording::Time(1), 0, true).unwrap();
h.dir.expect(MockDirAction::Sync(Box::new(|| Err(nix_eio()))));
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
drop(w);
assert!(h.syncer.iter(&h.syncer_rcv)); // AsyncSave
assert_eq!(h.syncer.planned_flushes.len(), 1);
assert!(h.syncer.iter(&h.syncer_rcv)); // planned flush
assert_eq!(h.syncer.planned_flushes.len(), 0);
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
f.ensure_done();
h.dir.ensure_done();
{
let l = h.db.lock();
let s = l.streams_by_id().get(&testutil::TEST_STREAM_ID).unwrap();
assert_eq!(s.bytes_to_add, 0);
assert_eq!(s.sample_file_bytes, 4);
}
// The syncer should shut down cleanly.
drop(h.channel);
h.db.lock().clear_on_flush();
assert_eq!(h.syncer_rcv.try_recv().err(),
Some(std::sync::mpsc::TryRecvError::Disconnected));
assert!(h.syncer.planned_flushes.is_empty());
}
#[test]
fn gc_path_retries() {
testutil::init();
let mut h = new_harness(0);
h.db.lock().update_retention(&[db::RetentionChange {
stream_id: testutil::TEST_STREAM_ID,
new_record: true,
new_limit: 3,
}]).unwrap();
// Setup: add a 3-byte recording.
let video_sample_entry_id = h.db.lock().insert_video_sample_entry(
1920, 1080, [0u8; 100].to_vec(), "avc1.000000".to_owned()).unwrap();
let mut w = Writer::new(&h.dir, &h.db, &h.channel, testutil::TEST_STREAM_ID,
video_sample_entry_id);
let f = MockFile::new();
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 1),
Box::new({ let f = f.clone(); move |_id| Ok(f.clone()) })));
f.expect(MockFileAction::Write(Box::new(|buf| { assert_eq!(buf, b"123"); Ok(3) })));
f.expect(MockFileAction::SyncAll(Box::new(|| Ok(()))));
w.write(b"123", recording::Time(2), 0, true).unwrap();
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
w.close(Some(1)).unwrap();
assert!(h.syncer.iter(&h.syncer_rcv)); // AsyncSave
assert_eq!(h.syncer.planned_flushes.len(), 1);
assert!(h.syncer.iter(&h.syncer_rcv)); // planned flush
assert_eq!(h.syncer.planned_flushes.len(), 0);
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
f.ensure_done();
h.dir.ensure_done();
// Then a 1-byte recording.
let f = MockFile::new();
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 2),
Box::new({ let f = f.clone(); move |_id| Ok(f.clone()) })));
f.expect(MockFileAction::Write(Box::new(|buf| { assert_eq!(buf, b"4"); Ok(1) })));
f.expect(MockFileAction::SyncAll(Box::new(|| Ok(()))));
w.write(b"4", recording::Time(3), 1, true).unwrap();
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
h.dir.expect(MockDirAction::Unlink(CompositeId::new(1, 1), Box::new({
let db = h.db.clone();
move |_| {
// The drop(w) below should cause the old recording to be deleted (moved to
// garbage). When the database is flushed, the syncer forces garbage collection
// including this unlink.
// This should have already applied the changes to sample file bytes, even
// though the garbage has yet to be collected.
let l = db.lock();
let s = l.streams_by_id().get(&testutil::TEST_STREAM_ID).unwrap();
assert_eq!(s.bytes_to_delete, 0);
assert_eq!(s.bytes_to_add, 0);
assert_eq!(s.sample_file_bytes, 1);
Err(nix_eio()) // force a retry.
}
})));
h.dir.expect(MockDirAction::Unlink(CompositeId::new(1, 1), Box::new(|_| Ok(()))));
h.dir.expect(MockDirAction::Sync(Box::new(|| Err(nix_eio()))));
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
drop(w);
assert!(h.syncer.iter(&h.syncer_rcv)); // AsyncSave
assert_eq!(h.syncer.planned_flushes.len(), 1);
assert!(h.syncer.iter(&h.syncer_rcv)); // planned flush
assert_eq!(h.syncer.planned_flushes.len(), 0);
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
f.ensure_done();
h.dir.ensure_done();
// Garbage should be marked collected on the next flush.
{
let mut l = h.db.lock();
let dir = l.sample_file_dirs_by_id().get(&h.dir_id).unwrap();
assert!(dir.garbage_needs_unlink.is_empty());
assert!(!dir.garbage_unlinked.is_empty());
l.flush("forced gc").unwrap();
let dir = l.sample_file_dirs_by_id().get(&h.dir_id).unwrap();
assert!(dir.garbage_needs_unlink.is_empty());
assert!(dir.garbage_unlinked.is_empty());
}
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
// The syncer should shut down cleanly.
drop(h.channel);
h.db.lock().clear_on_flush();
assert_eq!(h.syncer_rcv.try_recv().err(),
Some(std::sync::mpsc::TryRecvError::Disconnected));
assert!(h.syncer.planned_flushes.is_empty());
}
#[test]
fn planned_flush() {
testutil::init();
let mut h = new_harness(60); // flush_if_sec=60
// There's a database constraint forbidding a recording starting at t=0, so advance.
h.db.clocks().sleep(time::Duration::seconds(1));
// Setup: add a 3-byte recording.
let video_sample_entry_id = h.db.lock().insert_video_sample_entry(
1920, 1080, [0u8; 100].to_vec(), "avc1.000000".to_owned()).unwrap();
let mut w = Writer::new(&h.dir, &h.db, &h.channel, testutil::TEST_STREAM_ID,
video_sample_entry_id);
let f1 = MockFile::new();
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 1),
Box::new({ let f = f1.clone(); move |_id| Ok(f.clone()) })));
f1.expect(MockFileAction::Write(Box::new(|buf| { assert_eq!(buf, b"123"); Ok(3) })));
f1.expect(MockFileAction::SyncAll(Box::new(|| Ok(()))));
w.write(b"123", recording::Time(recording::TIME_UNITS_PER_SEC), 0, true).unwrap();
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
drop(w);
assert!(h.syncer.iter(&h.syncer_rcv)); // AsyncSave
assert_eq!(h.syncer.planned_flushes.len(), 1);
// Flush and let 30 seconds go by.
h.db.lock().flush("forced").unwrap();
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
assert_eq!(h.syncer.planned_flushes.len(), 1);
h.db.clocks().sleep(time::Duration::seconds(30));
// Then, a 1-byte recording.
let mut w = Writer::new(&h.dir, &h.db, &h.channel, testutil::TEST_STREAM_ID,
video_sample_entry_id);
let f2 = MockFile::new();
h.dir.expect(MockDirAction::Create(CompositeId::new(1, 2),
Box::new({ let f = f2.clone(); move |_id| Ok(f.clone()) })));
f2.expect(MockFileAction::Write(Box::new(|buf| { assert_eq!(buf, b"4"); Ok(1) })));
f2.expect(MockFileAction::SyncAll(Box::new(|| Ok(()))));
w.write(b"4", recording::Time(31*recording::TIME_UNITS_PER_SEC), 1, true).unwrap();
h.dir.expect(MockDirAction::Sync(Box::new(|| Ok(()))));
drop(w);
assert!(h.syncer.iter(&h.syncer_rcv)); // AsyncSave
assert_eq!(h.syncer.planned_flushes.len(), 2);
assert_eq!(h.syncer.planned_flushes.len(), 2);
let db_flush_count_before = h.db.lock().flushes();
assert_eq!(h.db.clocks().monotonic(), time::Timespec::new(31, 0));
assert!(h.syncer.iter(&h.syncer_rcv)); // planned flush (no-op)
assert_eq!(h.db.clocks().monotonic(), time::Timespec::new(61, 0));
assert_eq!(h.db.lock().flushes(), db_flush_count_before);
assert_eq!(h.syncer.planned_flushes.len(), 1);
assert!(h.syncer.iter(&h.syncer_rcv)); // planned flush
assert_eq!(h.db.clocks().monotonic(), time::Timespec::new(91, 0));
assert_eq!(h.db.lock().flushes(), db_flush_count_before + 1);
assert_eq!(h.syncer.planned_flushes.len(), 0);
assert!(h.syncer.iter(&h.syncer_rcv)); // DatabaseFlushed
f1.ensure_done();
f2.ensure_done();
h.dir.ensure_done();
// The syncer should shut down cleanly.
drop(h.channel);
h.db.lock().clear_on_flush();
assert_eq!(h.syncer_rcv.try_recv().err(),
Some(std::sync::mpsc::TryRecvError::Disconnected));
assert!(h.syncer.planned_flushes.is_empty());
}
#[test]
fn adjust() {
testutil::init();
// no-ops.
for v in &[None, Some(0), Some(-10), Some(10)] {
let mut a = ClockAdjuster::new(*v);
for _ in 0..1800 {
assert_eq!(3000, a.adjust(3000), "v={:?}", *v);
}
}
// typical, 100 ppm adjustment.
let mut a = ClockAdjuster::new(Some(-540));
let mut total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 2999 || new == 3000);
total += new;
}
let expected = 1800*3000 - 540;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
a = ClockAdjuster::new(Some(540));
let mut total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 3000 || new == 3001);
total += new;
}
let expected = 1800*3000 + 540;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
// capped at 500 ppm (change of 2,700/90,000ths over 1 minute).
a = ClockAdjuster::new(Some(-1_000_000));
total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 2998 || new == 2999, "new={}", new);
total += new;
}
let expected = 1800*3000 - 2700;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
a = ClockAdjuster::new(Some(1_000_000));
total = 0;
for _ in 0..1800 {
let new = a.adjust(3000);
assert!(new == 3001 || new == 3002, "new={}", new);
total += new;
}
let expected = 1800*3000 + 2700;
assert!(total == expected || total == expected + 1, "total={} vs expected={}",
total, expected);
}
}