// This file is part of Moonfire NVR, a security camera network video recorder.
// Copyright (C) 2016 The Moonfire NVR Authors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// In addition, as a special exception, the copyright holders give
// permission to link the code of portions of this program with the
// OpenSSL library under certain conditions as described in each
// individual source file, and distribute linked combinations including
// the two.
//
// You must obey the GNU General Public License in all respects for all
// of the code used other than OpenSSL. If you modify file(s) with this
// exception, you may extend this exception to your version of the
// file(s), but you are not obligated to do so. If you do not wish to do
// so, delete this exception statement from your version. If you delete
// this exception statement from all source files in the program, then
// also delete it here.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
use crate::coding::{append_varint32, decode_varint32, unzigzag32, zigzag32};
use crate::db;
use failure::{Error, bail, format_err};
use lazy_static::lazy_static;
use log::trace;
use regex::Regex;
use std::ops;
use std::fmt;
use std::ops::Range;
use std::str::FromStr;
use time;
pub const TIME_UNITS_PER_SEC: i64 = 90000;
pub const DESIRED_RECORDING_DURATION: i64 = 60 * TIME_UNITS_PER_SEC;
pub const MAX_RECORDING_DURATION: i64 = 5 * 60 * TIME_UNITS_PER_SEC;
/// A time specified as 90,000ths of a second since 1970-01-01 00:00:00 UTC.
#[derive(Clone, Copy, Default, Eq, Ord, PartialEq, PartialOrd)]
pub struct Time(pub i64);
impl Time {
pub fn new(tm: time::Timespec) -> Self {
Time(tm.sec * TIME_UNITS_PER_SEC + tm.nsec as i64 * TIME_UNITS_PER_SEC / 1_000_000_000)
}
pub const fn min_value() -> Self { Time(i64::min_value()) }
pub const fn max_value() -> Self { Time(i64::max_value()) }
/// Parses a time as either 90,000ths of a second since epoch or a RFC 3339-like string.
///
/// The former is 90,000ths of a second since 1970-01-01T00:00:00 UTC, excluding leap seconds.
///
/// The latter is a string such as `2006-01-02T15:04:05`, followed by an optional 90,000ths of
/// a second such as `:00001`, followed by an optional time zone offset such as `Z` or
/// `-07:00`. A missing fraction is assumed to be 0. A missing time zone offset implies the
/// local time zone.
pub fn parse(s: &str) -> Result {
lazy_static! {
static ref RE: Regex = Regex::new(r#"(?x)
^
([0-9]{4})-([0-9]{2})-([0-9]{2})T([0-9]{2}):([0-9]{2}):([0-9]{2})
(?::([0-9]{5}))?
(Z|[+-]([0-9]{2}):([0-9]{2}))?
$"#).unwrap();
}
// First try parsing as 90,000ths of a second since epoch.
match i64::from_str(s) {
Ok(i) => return Ok(Time(i)),
Err(_) => {},
}
// If that failed, parse as a time string or bust.
let c = RE.captures(s).ok_or_else(|| format_err!("unparseable time {:?}", s))?;
let mut tm = time::Tm{
tm_sec: i32::from_str(c.get(6).unwrap().as_str()).unwrap(),
tm_min: i32::from_str(c.get(5).unwrap().as_str()).unwrap(),
tm_hour: i32::from_str(c.get(4).unwrap().as_str()).unwrap(),
tm_mday: i32::from_str(c.get(3).unwrap().as_str()).unwrap(),
tm_mon: i32::from_str(c.get(2).unwrap().as_str()).unwrap(),
tm_year: i32::from_str(c.get(1).unwrap().as_str()).unwrap(),
tm_wday: 0,
tm_yday: 0,
tm_isdst: -1,
tm_utcoff: 0,
tm_nsec: 0,
};
if tm.tm_mon == 0 {
bail!("time {:?} has month 0", s);
}
tm.tm_mon -= 1;
if tm.tm_year < 1900 {
bail!("time {:?} has year before 1900", s);
}
tm.tm_year -= 1900;
// The time crate doesn't use tm_utcoff properly; it just calls timegm() if tm_utcoff == 0,
// mktime() otherwise. If a zone is specified, use the timegm path and a manual offset.
// If no zone is specified, use the tm_utcoff path. This is pretty lame, but follow the
// chrono crate's lead and just use 0 or 1 to choose between these functions.
let sec = if let Some(zone) = c.get(8) {
tm.to_timespec().sec + if zone.as_str() == "Z" {
0
} else {
let off = i64::from_str(c.get(9).unwrap().as_str()).unwrap() * 3600 +
i64::from_str(c.get(10).unwrap().as_str()).unwrap() * 60;
if zone.as_str().as_bytes()[0] == b'-' { off } else { -off }
}
} else {
tm.tm_utcoff = 1;
tm.to_timespec().sec
};
let fraction = if let Some(f) = c.get(7) { i64::from_str(f.as_str()).unwrap() } else { 0 };
Ok(Time(sec * TIME_UNITS_PER_SEC + fraction))
}
/// Convert to unix seconds by floor method (rounding down).
pub fn unix_seconds(&self) -> i64 { self.0 / TIME_UNITS_PER_SEC }
}
impl ops::Sub for Time {
type Output = Duration;
fn sub(self, rhs: Time) -> Duration { Duration(self.0 - rhs.0) }
}
impl ops::AddAssign for Time {
fn add_assign(&mut self, rhs: Duration) { self.0 += rhs.0 }
}
impl ops::Add for Time {
type Output = Time;
fn add(self, rhs: Duration) -> Time { Time(self.0 + rhs.0) }
}
impl ops::Sub for Time {
type Output = Time;
fn sub(self, rhs: Duration) -> Time { Time(self.0 - rhs.0) }
}
impl fmt::Debug for Time {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Write both the raw and display forms.
write!(f, "{} /* {} */", self.0, self)
}
}
impl fmt::Display for Time {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let tm = time::at(time::Timespec{sec: self.0 / TIME_UNITS_PER_SEC, nsec: 0});
let zone_minutes = tm.tm_utcoff.abs() / 60;
write!(f, "{}:{:05}{}{:02}:{:02}", tm.strftime("%FT%T").or_else(|_| Err(fmt::Error))?,
self.0 % TIME_UNITS_PER_SEC,
if tm.tm_utcoff > 0 { '+' } else { '-' }, zone_minutes / 60, zone_minutes % 60)
}
}
/// A duration specified in 1/90,000ths of a second.
/// Durations are typically non-negative, but a `db::CameraDayValue::duration` may be negative.
#[derive(Clone, Copy, Debug, Default, Eq, Ord, PartialEq, PartialOrd)]
pub struct Duration(pub i64);
impl Duration {
pub fn to_tm_duration(&self) -> time::Duration {
time::Duration::nanoseconds(self.0 * 100000 / 9)
}
}
impl fmt::Display for Duration {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut seconds = self.0 / TIME_UNITS_PER_SEC;
const MINUTE_IN_SECONDS: i64 = 60;
const HOUR_IN_SECONDS: i64 = 60 * MINUTE_IN_SECONDS;
const DAY_IN_SECONDS: i64 = 24 * HOUR_IN_SECONDS;
let days = seconds / DAY_IN_SECONDS;
seconds %= DAY_IN_SECONDS;
let hours = seconds / HOUR_IN_SECONDS;
seconds %= HOUR_IN_SECONDS;
let minutes = seconds / MINUTE_IN_SECONDS;
seconds %= MINUTE_IN_SECONDS;
let mut have_written = if days > 0 {
write!(f, "{} day{}", days, if days == 1 { "" } else { "s" })?;
true
} else {
false
};
if hours > 0 {
write!(f, "{}{} hour{}", if have_written { " " } else { "" },
hours, if hours == 1 { "" } else { "s" })?;
have_written = true;
}
if minutes > 0 {
write!(f, "{}{} minute{}", if have_written { " " } else { "" },
minutes, if minutes == 1 { "" } else { "s" })?;
have_written = true;
}
if seconds > 0 || !have_written {
write!(f, "{}{} second{}", if have_written { " " } else { "" },
seconds, if seconds == 1 { "" } else { "s" })?;
}
Ok(())
}
}
impl ops::Add for Duration {
type Output = Duration;
fn add(self, rhs: Duration) -> Duration { Duration(self.0 + rhs.0) }
}
impl ops::AddAssign for Duration {
fn add_assign(&mut self, rhs: Duration) { self.0 += rhs.0 }
}
impl ops::SubAssign for Duration {
fn sub_assign(&mut self, rhs: Duration) { self.0 -= rhs.0 }
}
/// An iterator through a sample index.
/// Initially invalid; call `next()` before each read.
#[derive(Clone, Copy, Debug)]
pub struct SampleIndexIterator {
/// The index byte position of the next sample to read (low 31 bits) and if the current
/// same is a key frame (high bit).
i_and_is_key: u32,
/// The starting data byte position of this sample within the segment.
pub pos: i32,
/// The starting time of this sample within the segment (in 90 kHz units).
pub start_90k: i32,
/// The duration of this sample (in 90 kHz units).
pub duration_90k: i32,
/// The byte length of this frame.
pub bytes: i32,
/// The byte length of the last frame of the "other" type: if this one is key, the last
/// non-key; if this one is non-key, the last key.
bytes_other: i32,
}
impl SampleIndexIterator {
pub fn new() -> SampleIndexIterator {
SampleIndexIterator{i_and_is_key: 0,
pos: 0,
start_90k: 0,
duration_90k: 0,
bytes: 0,
bytes_other: 0}
}
pub fn next(&mut self, data: &[u8]) -> Result {
self.pos += self.bytes;
self.start_90k += self.duration_90k;
let i = (self.i_and_is_key & 0x7FFF_FFFF) as usize;
if i == data.len() {
return Ok(false)
}
let (raw1, i1) = match decode_varint32(data, i) {
Ok(tuple) => tuple,
Err(()) => bail!("bad varint 1 at offset {}", i),
};
let (raw2, i2) = match decode_varint32(data, i1) {
Ok(tuple) => tuple,
Err(()) => bail!("bad varint 2 at offset {}", i1),
};
let duration_90k_delta = unzigzag32(raw1 >> 1);
self.duration_90k += duration_90k_delta;
if self.duration_90k < 0 {
bail!("negative duration {} after applying delta {}",
self.duration_90k, duration_90k_delta);
}
if self.duration_90k == 0 && data.len() > i2 {
bail!("zero duration only allowed at end; have {} bytes left", data.len() - i2);
}
let (prev_bytes_key, prev_bytes_nonkey) = match self.is_key() {
true => (self.bytes, self.bytes_other),
false => (self.bytes_other, self.bytes),
};
self.i_and_is_key = (i2 as u32) | (((raw1 & 1) as u32) << 31);
let bytes_delta = unzigzag32(raw2);
if self.is_key() {
self.bytes = prev_bytes_key + bytes_delta;
self.bytes_other = prev_bytes_nonkey;
} else {
self.bytes = prev_bytes_nonkey + bytes_delta;
self.bytes_other = prev_bytes_key;
}
if self.bytes <= 0 {
bail!("non-positive bytes {} after applying delta {} to key={} frame at ts {}",
self.bytes, bytes_delta, self.is_key(), self.start_90k);
}
Ok(true)
}
pub fn uninitialized(&self) -> bool { self.i_and_is_key == 0 }
pub fn is_key(&self) -> bool { (self.i_and_is_key & 0x8000_0000) != 0 }
}
#[derive(Debug)]
pub struct SampleIndexEncoder {
prev_duration_90k: i32,
prev_bytes_key: i32,
prev_bytes_nonkey: i32,
}
impl SampleIndexEncoder {
pub fn new() -> Self {
SampleIndexEncoder {
prev_duration_90k: 0,
prev_bytes_key: 0,
prev_bytes_nonkey: 0,
}
}
pub fn add_sample(&mut self, duration_90k: i32, bytes: i32, is_key: bool,
r: &mut db::RecordingToInsert) -> Result<(), Error> {
let duration_delta = duration_90k - self.prev_duration_90k;
self.prev_duration_90k = duration_90k;
let new_duration_90k = r.duration_90k + duration_90k;
if new_duration_90k as i64 > MAX_RECORDING_DURATION {
bail!("Duration {} exceeds maximum {}", new_duration_90k, MAX_RECORDING_DURATION);
}
r.duration_90k += duration_90k;
r.sample_file_bytes += bytes;
r.video_samples += 1;
let bytes_delta = bytes - if is_key {
let prev = self.prev_bytes_key;
r.video_sync_samples += 1;
self.prev_bytes_key = bytes;
prev
} else {
let prev = self.prev_bytes_nonkey;
self.prev_bytes_nonkey = bytes;
prev
};
append_varint32((zigzag32(duration_delta) << 1) | (is_key as u32), &mut r.video_index);
append_varint32(zigzag32(bytes_delta), &mut r.video_index);
Ok(())
}
}
/// A segment represents a view of some or all of a single recording, starting from a key frame.
/// Used by the `Mp4FileBuilder` class to splice together recordings into a single virtual .mp4.
#[derive(Debug)]
pub struct Segment {
pub id: db::CompositeId,
pub open_id: u32,
pub start: Time,
/// An iterator positioned at the beginning of the segment, or `None`. Most segments are
/// positioned at the beginning of the recording, so this is an optional box to shrink a long
/// of segments. `None` is equivalent to `SampleIndexIterator::new()`.
begin: Option>,
pub file_end: i32,
pub desired_range_90k: Range,
pub frames: u16,
pub key_frames: u16,
video_sample_entry_id_and_trailing_zero: i32,
}
impl Segment {
/// Creates a segment.
///
/// `desired_range_90k` represents the desired range of the segment relative to the start of
/// the recording. The actual range will start at the first key frame at or before the
/// desired start time. (The caller is responsible for creating an edit list to skip the
/// undesired portion.) It will end at the first frame after the desired range (unless the
/// desired range extends beyond the recording). (Likewise, the caller is responsible for
/// trimming the final frame's duration if desired.)
pub fn new(db: &db::LockedDatabase,
recording: &db::ListRecordingsRow,
desired_range_90k: Range) -> Result {
let mut self_ = Segment {
id: recording.id,
open_id: recording.open_id,
start: recording.start,
begin: None,
file_end: recording.sample_file_bytes,
desired_range_90k: desired_range_90k,
frames: recording.video_samples as u16,
key_frames: recording.video_sync_samples as u16,
video_sample_entry_id_and_trailing_zero:
recording.video_sample_entry_id |
((((recording.flags & db::RecordingFlags::TrailingZero as i32) != 0) as i32) << 31),
};
if self_.desired_range_90k.start > self_.desired_range_90k.end ||
self_.desired_range_90k.end > recording.duration_90k {
bail!("desired range [{}, {}) invalid for recording of length {}",
self_.desired_range_90k.start, self_.desired_range_90k.end,
recording.duration_90k);
}
if self_.desired_range_90k.start == 0 &&
self_.desired_range_90k.end == recording.duration_90k {
// Fast path. Existing entry is fine.
trace!("recording::Segment::new fast path, recording={:#?}", recording);
return Ok(self_)
}
// Slow path. Need to iterate through the index.
trace!("recording::Segment::new slow path, desired_range_90k={:?}, recording={:#?}",
self_.desired_range_90k, recording);
db.with_recording_playback(self_.id, &mut |playback| {
let mut begin = Box::new(SampleIndexIterator::new());
let data = &(&playback).video_index;
let mut it = SampleIndexIterator::new();
if !it.next(data)? {
bail!("no index");
}
if !it.is_key() {
bail!("not key frame");
}
// Stop when hitting a frame with this start time.
// Going until the end of the recording is special-cased because there can be a trailing
// frame of zero duration. It's unclear exactly how this should be handled, but let's
// include it for consistency with the fast path. It'd be bizarre to have it included or
// not based on desired_range_90k.start.
let end_90k = if self_.desired_range_90k.end == recording.duration_90k {
i32::max_value()
} else {
self_.desired_range_90k.end
};
loop {
if it.start_90k <= self_.desired_range_90k.start && it.is_key() {
// new start candidate.
*begin = it;
self_.frames = 0;
self_.key_frames = 0;
}
if it.start_90k >= end_90k && self_.frames > 0 {
break;
}
self_.frames += 1;
self_.key_frames += it.is_key() as u16;
if !it.next(data)? {
break;
}
}
self_.begin = Some(begin);
self_.file_end = it.pos;
self_.video_sample_entry_id_and_trailing_zero =
recording.video_sample_entry_id |
(((it.duration_90k == 0) as i32) << 31);
Ok(())
})?;
Ok(self_)
}
pub fn video_sample_entry_id(&self) -> i32 {
self.video_sample_entry_id_and_trailing_zero & 0x7FFFFFFF
}
pub fn have_trailing_zero(&self) -> bool { self.video_sample_entry_id_and_trailing_zero < 0 }
/// Returns the byte range within the sample file of data associated with this segment.
pub fn sample_file_range(&self) -> Range {
self.begin.as_ref().map(|b| b.pos as u64).unwrap_or(0) .. self.file_end as u64
}
/// Returns the actual start time as described in `new`.
pub fn actual_start_90k(&self) -> i32 { self.begin.as_ref().map(|b| b.start_90k).unwrap_or(0) }
/// Iterates through each frame in the segment.
/// Must be called without the database lock held; retrieves video index from the cache.
pub fn foreach(&self, playback: &db::RecordingPlayback, mut f: F) -> Result<(), Error>
where F: FnMut(&SampleIndexIterator) -> Result<(), Error> {
trace!("foreach on recording {}: {} frames, actual_start_90k: {}",
self.id, self.frames, self.actual_start_90k());
let data = &(&playback).video_index;
let mut it = match self.begin {
Some(ref b) => **b,
None => SampleIndexIterator::new(),
};
if it.uninitialized() {
if !it.next(data)? {
bail!("recording {}: no frames", self.id);
}
if !it.is_key() {
bail!("recording {}: doesn't start with key frame", self.id);
}
}
let mut have_frame = true;
let mut key_frame = 0;
for i in 0 .. self.frames {
if !have_frame {
bail!("recording {}: expected {} frames, found only {}", self.id, self.frames, i+1);
}
if it.is_key() {
key_frame += 1;
if key_frame > self.key_frames {
bail!("recording {}: more than expected {} key frames",
self.id, self.key_frames);
}
}
// Note: this inner loop avoids ? for performance. Don't change these lines without
// reading https://github.com/rust-lang/rust/issues/37939 and running
// mp4::bench::build_index.
if let Err(e) = f(&it) {
return Err(e);
}
have_frame = match it.next(data) {
Err(e) => return Err(e),
Ok(hf) => hf,
};
}
if key_frame < self.key_frames {
bail!("recording {}: expected {} key frames, found only {}",
self.id, self.key_frames, key_frame);
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use base::clock::RealClocks;
use super::*;
use crate::testutil::{self, TestDb};
#[test]
fn test_parse_time() {
testutil::init();
let tests = &[
("2006-01-02T15:04:05-07:00", 102261550050000),
("2006-01-02T15:04:05:00001-07:00", 102261550050001),
("2006-01-02T15:04:05-08:00", 102261874050000),
("2006-01-02T15:04:05", 102261874050000), // implied -08:00
("2006-01-02T15:04:05:00001", 102261874050001), // implied -08:00
("2006-01-02T15:04:05-00:00", 102259282050000),
("2006-01-02T15:04:05Z", 102259282050000),
("102261550050000", 102261550050000),
];
for test in tests {
assert_eq!(test.1, Time::parse(test.0).unwrap().0, "parsing {}", test.0);
}
}
#[test]
fn test_format_time() {
testutil::init();
assert_eq!("2006-01-02T15:04:05:00000-08:00", format!("{}", Time(102261874050000)));
}
#[test]
fn test_display_duration() {
testutil::init();
let tests = &[
// (output, seconds)
("0 seconds", 0),
("1 second", 1),
("1 minute", 60),
("1 minute 1 second", 61),
("2 minutes", 120),
("1 hour", 3600),
("1 hour 1 minute", 3660),
("2 hours", 7200),
("1 day", 86400),
("1 day 1 hour", 86400 + 3600),
("2 days", 2 * 86400),
];
for test in tests {
assert_eq!(test.0, format!("{}", Duration(test.1 * TIME_UNITS_PER_SEC)));
}
}
/// Tests encoding the example from design/schema.md.
#[test]
fn test_encode_example() {
testutil::init();
let mut r = db::RecordingToInsert::default();
let mut e = SampleIndexEncoder::new();
e.add_sample(10, 1000, true, &mut r).unwrap();
e.add_sample(9, 10, false, &mut r).unwrap();
e.add_sample(11, 15, false, &mut r).unwrap();
e.add_sample(10, 12, false, &mut r).unwrap();
e.add_sample(10, 1050, true, &mut r).unwrap();
assert_eq!(r.video_index, b"\x29\xd0\x0f\x02\x14\x08\x0a\x02\x05\x01\x64");
assert_eq!(10 + 9 + 11 + 10 + 10, r.duration_90k);
assert_eq!(5, r.video_samples);
assert_eq!(2, r.video_sync_samples);
}
/// Tests a round trip from `SampleIndexEncoder` to `SampleIndexIterator`.
#[test]
fn test_round_trip() {
testutil::init();
#[derive(Debug, PartialEq, Eq)]
struct Sample {
duration_90k: i32,
bytes: i32,
is_key: bool,
}
let samples = [
Sample{duration_90k: 10, bytes: 30000, is_key: true},
Sample{duration_90k: 9, bytes: 1000, is_key: false},
Sample{duration_90k: 11, bytes: 1100, is_key: false},
Sample{duration_90k: 18, bytes: 31000, is_key: true},
Sample{duration_90k: 0, bytes: 1000, is_key: false},
];
let mut r = db::RecordingToInsert::default();
let mut e = SampleIndexEncoder::new();
for sample in &samples {
e.add_sample(sample.duration_90k, sample.bytes, sample.is_key, &mut r).unwrap();
}
let mut it = SampleIndexIterator::new();
for sample in &samples {
assert!(it.next(&r.video_index).unwrap());
assert_eq!(sample,
&Sample{duration_90k: it.duration_90k,
bytes: it.bytes,
is_key: it.is_key()});
}
assert!(!it.next(&r.video_index).unwrap());
}
/// Tests that `SampleIndexIterator` spots several classes of errors.
/// TODO: test and fix overflow cases.
#[test]
fn test_iterator_errors() {
testutil::init();
struct Test {
encoded: &'static [u8],
err: &'static str,
}
let tests = [
Test{encoded: b"\x80", err: "bad varint 1 at offset 0"},
Test{encoded: b"\x00\x80", err: "bad varint 2 at offset 1"},
Test{encoded: b"\x00\x02\x00\x00",
err: "zero duration only allowed at end; have 2 bytes left"},
Test{encoded: b"\x02\x02",
err: "negative duration -1 after applying delta -1"},
Test{encoded: b"\x04\x00",
err: "non-positive bytes 0 after applying delta 0 to key=false frame at ts 0"},
];
for test in &tests {
let mut it = SampleIndexIterator::new();
assert_eq!(it.next(test.encoded).unwrap_err().to_string(), test.err);
}
}
fn get_frames(db: &db::Database, segment: &Segment, f: F) -> Vec
where F: Fn(&SampleIndexIterator) -> T {
let mut v = Vec::new();
db.lock().with_recording_playback(segment.id, &mut |playback| {
segment.foreach(playback, |it| { v.push(f(it)); Ok(()) })
}).unwrap();
v
}
/// Tests that a `Segment` correctly can clip at the beginning and end.
/// This is a simpler case; all sync samples means we can start on any frame.
#[test]
fn test_segment_clipping_with_all_sync() {
testutil::init();
let mut r = db::RecordingToInsert::default();
let mut encoder = SampleIndexEncoder::new();
for i in 1..6 {
let duration_90k = 2 * i;
let bytes = 3 * i;
encoder.add_sample(duration_90k, bytes, true, &mut r).unwrap();
}
let db = TestDb::new(RealClocks {});
let row = db.insert_recording_from_encoder(r);
// Time range [2, 2 + 4 + 6 + 8) means the 2nd, 3rd, 4th samples should be
// included.
let segment = Segment::new(&db.db.lock(), &row, 2 .. 2+4+6+8).unwrap();
assert_eq!(&get_frames(&db.db, &segment, |it| it.duration_90k), &[4, 6, 8]);
}
/// Half sync frames means starting from the last sync frame <= desired point.
#[test]
fn test_segment_clipping_with_half_sync() {
testutil::init();
let mut r = db::RecordingToInsert::default();
let mut encoder = SampleIndexEncoder::new();
for i in 1..6 {
let duration_90k = 2 * i;
let bytes = 3 * i;
encoder.add_sample(duration_90k, bytes, (i % 2) == 1, &mut r).unwrap();
}
let db = TestDb::new(RealClocks {});
let row = db.insert_recording_from_encoder(r);
// Time range [2 + 4 + 6, 2 + 4 + 6 + 8) means the 4th sample should be included.
// The 3rd also gets pulled in because it is a sync frame and the 4th is not.
let segment = Segment::new(&db.db.lock(), &row, 2+4+6 .. 2+4+6+8).unwrap();
assert_eq!(&get_frames(&db.db, &segment, |it| it.duration_90k), &[6, 8]);
}
#[test]
fn test_segment_clipping_with_trailing_zero() {
testutil::init();
let mut r = db::RecordingToInsert::default();
let mut encoder = SampleIndexEncoder::new();
encoder.add_sample(1, 1, true, &mut r).unwrap();
encoder.add_sample(1, 2, true, &mut r).unwrap();
encoder.add_sample(0, 3, true, &mut r).unwrap();
let db = TestDb::new(RealClocks {});
let row = db.insert_recording_from_encoder(r);
let segment = Segment::new(&db.db.lock(), &row, 1 .. 2).unwrap();
assert_eq!(&get_frames(&db.db, &segment, |it| it.bytes), &[2, 3]);
}
/// Even if the desired duration is 0, there should still be a frame.
#[test]
fn test_segment_zero_desired_duration() {
testutil::init();
let mut r = db::RecordingToInsert::default();
let mut encoder = SampleIndexEncoder::new();
encoder.add_sample(1, 1, true, &mut r).unwrap();
let db = TestDb::new(RealClocks {});
let row = db.insert_recording_from_encoder(r);
let segment = Segment::new(&db.db.lock(), &row, 0 .. 0).unwrap();
assert_eq!(&get_frames(&db.db, &segment, |it| it.bytes), &[1]);
}
/// Test a `Segment` which uses the whole recording.
/// This takes a fast path which skips scanning the index in `new()`.
#[test]
fn test_segment_fast_path() {
testutil::init();
let mut r = db::RecordingToInsert::default();
let mut encoder = SampleIndexEncoder::new();
for i in 1..6 {
let duration_90k = 2 * i;
let bytes = 3 * i;
encoder.add_sample(duration_90k, bytes, (i % 2) == 1, &mut r).unwrap();
}
let db = TestDb::new(RealClocks {});
let row = db.insert_recording_from_encoder(r);
let segment = Segment::new(&db.db.lock(), &row, 0 .. 2+4+6+8+10).unwrap();
assert_eq!(&get_frames(&db.db, &segment, |it| it.duration_90k), &[2, 4, 6, 8, 10]);
}
#[test]
fn test_segment_fast_path_with_trailing_zero() {
testutil::init();
let mut r = db::RecordingToInsert::default();
let mut encoder = SampleIndexEncoder::new();
encoder.add_sample(1, 1, true, &mut r).unwrap();
encoder.add_sample(1, 2, true, &mut r).unwrap();
encoder.add_sample(0, 3, true, &mut r).unwrap();
let db = TestDb::new(RealClocks {});
let row = db.insert_recording_from_encoder(r);
let segment = Segment::new(&db.db.lock(), &row, 0 .. 2).unwrap();
assert_eq!(&get_frames(&db.db, &segment, |it| it.bytes), &[1, 2, 3]);
}
// TODO: test segment error cases involving mismatch between row frames/key_frames and index.
}
#[cfg(all(test, feature="nightly"))]
mod bench {
extern crate test;
use super::*;
/// Benchmarks the decoder, which is performance-critical for .mp4 serving.
#[bench]
fn bench_decoder(b: &mut test::Bencher) {
let data = include_bytes!("testdata/video_sample_index.bin");
b.bytes = data.len() as u64;
b.iter(|| {
let mut it = SampleIndexIterator::new();
while it.next(data).unwrap() {}
assert_eq!(30104460, it.pos);
assert_eq!(5399985, it.start_90k);
});
}
}