// This file is part of Moonfire NVR, a security camera network video recorder. // Copyright (C) 2016 The Moonfire NVR Authors // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // In addition, as a special exception, the copyright holders give // permission to link the code of portions of this program with the // OpenSSL library under certain conditions as described in each // individual source file, and distribute linked combinations including // the two. // // You must obey the GNU General Public License in all respects for all // of the code used other than OpenSSL. If you modify file(s) with this // exception, you may extend this exception to your version of the // file(s), but you are not obligated to do so. If you do not wish to do // so, delete this exception statement from your version. If you delete // this exception statement from all source files in the program, then // also delete it here. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use nom::branch::alt; use nom::bytes::complete::{tag, take_while1}; use nom::character::complete::space0; use nom::combinator::{map, map_res, opt}; use nom::sequence::{delimited, tuple}; use nom::IResult; use std::fmt::Write as _; static MULTIPLIERS: [(char, u64); 4] = [ // (suffix character, power of 2) ('T', 40), ('G', 30), ('M', 20), ('K', 10), ]; /// Encodes a non-negative size into human-readable form. pub fn encode_size(mut raw: i64) -> String { let mut encoded = String::new(); for &(c, n) in &MULTIPLIERS { if raw >= 1i64 << n { write!(&mut encoded, "{}{} ", raw >> n, c).unwrap(); raw &= (1i64 << n) - 1; } } if raw > 0 || encoded.len() == 0 { write!(&mut encoded, "{}", raw).unwrap(); } else { encoded.pop(); // remove trailing space. } encoded } fn decode_sizepart(input: &str) -> IResult<&str, i64> { map( tuple(( map_res(take_while1(|c: char| c.is_ascii_digit()), |input: &str| { i64::from_str_radix(input, 10) }), opt(alt(( nom::combinator::value(1 << 40, tag("T")), nom::combinator::value(1 << 30, tag("G")), nom::combinator::value(1 << 20, tag("M")), nom::combinator::value(1 << 10, tag("K")), ))), )), |(n, opt_unit)| n * opt_unit.unwrap_or(1), )(input) } fn decode_size_internal(input: &str) -> IResult<&str, i64> { nom::multi::fold_many1(delimited(space0, decode_sizepart, space0), 0, |sum, i| { sum + i })(input) } /// Decodes a human-readable size as output by encode_size. pub fn decode_size(encoded: &str) -> Result { let (remaining, decoded) = decode_size_internal(encoded).map_err(|_e| ())?; if !remaining.is_empty() { return Err(()); } Ok(decoded) } /// Returns a hex-encoded version of the input. pub fn hex(raw: &[u8]) -> String { #[rustfmt::skip] const HEX_CHARS: [u8; 16] = [ b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7', b'8', b'9', b'a', b'b', b'c', b'd', b'e', b'f', ]; let mut hex = Vec::with_capacity(2 * raw.len()); for b in raw { hex.push(HEX_CHARS[((b & 0xf0) >> 4) as usize]); hex.push(HEX_CHARS[(b & 0x0f) as usize]); } unsafe { String::from_utf8_unchecked(hex) } } /// Returns [0, 16) or error. fn dehex_byte(hex_byte: u8) -> Result { match hex_byte { b'0'..=b'9' => Ok(hex_byte - b'0'), b'a'..=b'f' => Ok(hex_byte - b'a' + 10), _ => Err(()), } } /// Returns a 20-byte raw form of the given hex string. /// (This is the size of a SHA1 hash, the only current use of this function.) pub fn dehex(hexed: &[u8]) -> Result<[u8; 20], ()> { if hexed.len() != 40 { return Err(()); } let mut out = [0; 20]; for i in 0..20 { out[i] = (dehex_byte(hexed[i << 1])? << 4) + dehex_byte(hexed[(i << 1) + 1])?; } Ok(out) } #[cfg(test)] mod tests { use super::*; #[test] fn test_decode() { assert_eq!(super::decode_size("100M").unwrap(), 100i64 << 20); assert_eq!(super::decode_size("100M 42").unwrap(), (100i64 << 20) + 42); } #[test] fn round_trip() { let s = "de382684a471f178e4e3a163762711b0653bfd83"; let dehexed = dehex(s.as_bytes()).unwrap(); assert_eq!(&hex(&dehexed[..]), s); } #[test] fn dehex_errors() { dehex(b"").unwrap_err(); dehex(b"de382684a471f178e4e3a163762711b0653bfd8g").unwrap_err(); } }