// This file is part of Moonfire NVR, a security camera digital video recorder. // Copyright (C) 2016 Scott Lamb // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // In addition, as a special exception, the copyright holders give // permission to link the code of portions of this program with the // OpenSSL library under certain conditions as described in each // individual source file, and distribute linked combinations including // the two. // // You must obey the GNU General Public License in all respects for all // of the code used other than OpenSSL. If you modify file(s) with this // exception, you may extend this exception to your version of the // file(s), but you are not obligated to do so. If you do not wish to do // so, delete this exception statement from your version. If you delete // this exception statement from all source files in the program, then // also delete it here. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use error::{Error, Result}; use std::fmt; use std::io; use std::marker::PhantomData; use std::ops::Range; #[derive(Debug)] struct SliceInfo { end: u64, writer: W, } pub trait ContextWriter { fn write_to(&self, ctx: &Ctx, r: Range, l: u64, out: &mut io::Write) -> Result<()>; } /// Calls `f` with an `io::Write` which delegates to `inner` only for the section defined by `r`. /// This is useful for easily implementing the `ContextWriter` interface for pieces that generate /// data on-the-fly rather than simply copying a buffer. pub fn clip_to_range(r: Range, l: u64, inner: &mut io::Write, mut f: F) -> Result<()> where F: FnMut(&mut Vec) -> Result<()> { // Just create a buffer for the whole slice and copy out the relevant portion. // One might expect it to be faster to avoid this memory allocation and extra copying, but // benchmarks show when making many 4-byte writes it's better to be able to inline many // Vec::write_all calls then make one call through traits to hyper's write logic. let mut buf = Vec::with_capacity(l as usize); f(&mut buf)?; inner.write_all(&buf[r.start as usize .. r.end as usize])?; Ok(()) } pub struct Slices { len: u64, slices: Vec>, phantom: PhantomData, } impl fmt::Debug for Slices where W: fmt::Debug { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} slices with overall length {}:", self.slices.len(), self.len)?; let mut start = 0; for (i, s) in self.slices.iter().enumerate() { write!(f, "\ni {:7}: range [{:12}, {:12}) len {:12}: {:?}", i, start, s.end, s.end - start, s.writer)?; start = s.end; } Ok(()) } } impl Slices where W: ContextWriter { pub fn new() -> Slices { Slices{len: 0, slices: Vec::new(), phantom: PhantomData} } pub fn reserve(&mut self, additional: usize) { self.slices.reserve(additional) } pub fn append(&mut self, len: u64, writer: W) { self.len += len; self.slices.push(SliceInfo{end: self.len, writer: writer}); } /// Returns the total byte length of all slices. pub fn len(&self) -> u64 { self.len } /// Returns the number of slices. pub fn num(&self) -> usize { self.slices.len() } pub fn write_to(&self, ctx: &C, range: Range, out: &mut io::Write) -> Result<()> { if range.start > range.end || range.end > self.len { return Err(Error{ description: format!("Bad range {:?} for slice of length {}", range, self.len), cause: None}); } // Binary search for the first slice of the range to write, determining its index and // (from the preceding slice) the start of its range. let (mut i, mut slice_start) = match self.slices.binary_search_by_key(&range.start, |s| s.end) { Ok(i) if i == self.slices.len() - 1 => return Ok(()), // at end. Ok(i) => (i+1, self.slices[i].end), // desired start == slice i's end; first is i+1! Err(i) if i == 0 => (i, 0), // desired start < slice 0's end; first is 0. Err(i) => (i, self.slices[i-1].end), // desired start < slice i's end; first is i. }; // Iterate through and write each slice until the end. let mut start_pos = range.start - slice_start; loop { let s = &self.slices[i]; let l = s.end - slice_start; if range.end <= s.end { // last slice. return s.writer.write_to(ctx, start_pos .. range.end - slice_start, l, out); } s.writer.write_to(ctx, start_pos .. s.end - slice_start, l, out)?; // setup next iteration. start_pos = 0; slice_start = s.end; i += 1; } } } #[cfg(test)] mod tests { use error::{Error, Result}; use std::cell::RefCell; use std::error::Error as E; use std::io::Write; use std::ops::Range; use std::vec::Vec; use super::{ContextWriter, Slices, clip_to_range}; #[derive(Debug, Eq, PartialEq)] pub struct FakeWrite { writer: &'static str, range: Range, } pub struct FakeWriter { name: &'static str, } impl ContextWriter>> for FakeWriter { fn write_to(&self, ctx: &RefCell>, r: Range, _l: u64, _out: &mut Write) -> Result<()> { ctx.borrow_mut().push(FakeWrite{writer: self.name, range: r}); Ok(()) } } pub fn new_slices() -> Slices>> { let mut s = Slices::new(); s.append(5, FakeWriter{name: "a"}); s.append(13, FakeWriter{name: "b"}); s.append(7, FakeWriter{name: "c"}); s.append(17, FakeWriter{name: "d"}); s.append(19, FakeWriter{name: "e"}); s } #[test] pub fn size() { assert_eq!(5 + 13 + 7 + 17 + 19, new_slices().len()); } #[test] pub fn exact_slice() { // Test writing exactly slice b. let s = new_slices(); let w = RefCell::new(Vec::new()); let mut dummy = Vec::new(); s.write_to(&w, 5 .. 18, &mut dummy).unwrap(); assert_eq!(&[FakeWrite{writer: "b", range: 0 .. 13}], &w.borrow()[..]); } #[test] pub fn offset_first() { // Test writing part of slice a. let s = new_slices(); let w = RefCell::new(Vec::new()); let mut dummy = Vec::new(); s.write_to(&w, 1 .. 3, &mut dummy).unwrap(); assert_eq!(&[FakeWrite{writer: "a", range: 1 .. 3}], &w.borrow()[..]); } #[test] pub fn offset_mid() { // Test writing part of slice b, all of slice c, and part of slice d. let s = new_slices(); let w = RefCell::new(Vec::new()); let mut dummy = Vec::new(); s.write_to(&w, 17 .. 26, &mut dummy).unwrap(); assert_eq!(&[ FakeWrite{writer: "b", range: 12 .. 13}, FakeWrite{writer: "c", range: 0 .. 7}, FakeWrite{writer: "d", range: 0 .. 1}, ], &w.borrow()[..]); } #[test] pub fn everything() { // Test writing the whole Slices. let s = new_slices(); let w = RefCell::new(Vec::new()); let mut dummy = Vec::new(); s.write_to(&w, 0 .. 61, &mut dummy).unwrap(); assert_eq!(&[ FakeWrite{writer: "a", range: 0 .. 5}, FakeWrite{writer: "b", range: 0 .. 13}, FakeWrite{writer: "c", range: 0 .. 7}, FakeWrite{writer: "d", range: 0 .. 17}, FakeWrite{writer: "e", range: 0 .. 19}, ], &w.borrow()[..]); } #[test] pub fn at_end() { let s = new_slices(); let w = RefCell::new(Vec::new()); let mut dummy = Vec::new(); s.write_to(&w, 61 .. 61, &mut dummy).unwrap(); let empty: &[FakeWrite] = &[]; assert_eq!(empty, &w.borrow()[..]); } #[test] pub fn test_clip_to_range() { let mut out = Vec::new(); // Simple case: one write with everything. clip_to_range(0 .. 5, 5, &mut out, |w| { w.write_all(b"01234").unwrap(); Ok(()) }).unwrap(); assert_eq!(b"01234", &out[..]); // Same in a few writes. out.clear(); clip_to_range(0 .. 5, 5, &mut out, |w| { w.write_all(b"0").unwrap(); w.write_all(b"123").unwrap(); w.write_all(b"4").unwrap(); Ok(()) }).unwrap(); assert_eq!(b"01234", &out[..]); // Limiting to a prefix. out.clear(); clip_to_range(0 .. 2, 5, &mut out, |w| { w.write_all(b"0").unwrap(); // all of this write w.write_all(b"123").unwrap(); // some of this write w.write_all(b"4").unwrap(); // none of this write Ok(()) }).unwrap(); assert_eq!(b"01", &out[..]); // Limiting to part in the middle. out.clear(); clip_to_range(2 .. 4, 5, &mut out, |w| { w.write_all(b"0").unwrap(); // none of this write w.write_all(b"1234").unwrap(); // middle of this write w.write_all(b"5678").unwrap(); // none of this write Ok(()) }).unwrap(); assert_eq!(b"23", &out[..]); // If the callback returns an error, it should be propagated (fast path or not). out.clear(); assert_eq!( clip_to_range(0 .. 4, 4, &mut out, |_| Err(Error::new("some error".to_owned()))) .unwrap_err().description(), "some error"); out.clear(); assert_eq!( clip_to_range(0 .. 1, 4, &mut out, |_| Err(Error::new("some error".to_owned()))) .unwrap_err().description(), "some error"); // TODO: if inner.write does a partial write, the next try should start at the correct // position. } }