// This file is part of Moonfire NVR, a security camera network video recorder. // Copyright (C) 2019 Scott Lamb // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // In addition, as a special exception, the copyright holders give // permission to link the code of portions of this program with the // OpenSSL library under certain conditions as described in each // individual source file, and distribute linked combinations including // the two. // // You must obey the GNU General Public License in all respects for all // of the code used other than OpenSSL. If you modify file(s) with this // exception, you may extend this exception to your version of the // file(s), but you are not obligated to do so. If you do not wish to do // so, delete this exception statement from your version. If you delete // this exception statement from all source files in the program, then // also delete it here. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use base::bail_t; use crate::coding; use crate::db::FromSqlUuid; use crate::recording; use failure::{Error, bail, format_err}; use fnv::FnvHashMap; use rusqlite::{Connection, Transaction, params}; use std::collections::{BTreeMap, BTreeSet}; use std::collections::btree_map::Entry; use std::ops::Range; use uuid::Uuid; /// All state associated with signals. This is the entry point to this module. pub(crate) struct State { signals_by_id: BTreeMap, /// All types with known states. Note that currently there's no requirement an entry here /// exists for every `type_` specified in a `Signal`, and there's an implied `0` (unknown) /// state for every `Type`. types_by_uuid: FnvHashMap, points_by_time: BTreeMap, /// `points_by_time` entries which need to be flushed to the database. dirty_by_time: BTreeSet, } /// Representation of all signals at a point in time. /// Each point matches a `signal_change` table row (when flushed). However, the in-memory /// representation keeps not only the changes as of that time but also the complete prior state. #[derive(Default)] struct Point { /// All data associated with the point. /// /// `data[0..changes_off]` represents previous state (immediately prior to this point). /// `data[changes_off..]` represents the changes at this point. /// /// This representation could be 8 bytes shorter on 64-bit platforms by using a u32 for the /// lengths, but this would require some unsafe code. /// /// The serialized form stored here must always be valid. data: Box<[u8]>, changes_off: usize, } impl Point { /// Creates a new point from `prev` and `changes`. /// /// The caller is responsible for validation. In particular, `changes` must be a valid /// serialized form. fn new(prev: &BTreeMap, changes: &[u8]) -> Self { let mut data = Vec::with_capacity(3 * prev.len() + changes.len()); append_serialized(prev, &mut data); let changes_off = data.len(); data.extend(changes); Point { data: data.into_boxed_slice(), changes_off, } } fn swap(&mut self, other: &mut Point) { std::mem::swap(&mut self.data, &mut other.data); std::mem::swap(&mut self.changes_off, &mut other.changes_off); } /// Returns an iterator over state as of immediately before this point. fn prev(&self) -> PointDataIterator { PointDataIterator::new(&self.data[0..self.changes_off]) } /// Returns an iterator over changes in this point. fn changes(&self) -> PointDataIterator { PointDataIterator::new(&self.data[self.changes_off..]) } /// Returns a mapping of signals to states immediately after this point. fn after(&self) -> BTreeMap { let mut after = BTreeMap::new(); let mut it = self.prev(); while let Some((signal, state)) = it.next().expect("in-mem prev is valid") { after.insert(signal, state); } let mut it = self.changes(); while let Some((signal, state)) = it.next().expect("in-mem changes is valid") { if state == 0 { after.remove(&signal); } else { after.insert(signal, state); } } after } } /// Appends a serialized form of `from` into `to`. /// /// `from` must be an iterator of `(signal, state)` with signal numbers in monotonically increasing /// order. fn append_serialized<'a, I>(from: I, to: &mut Vec) where I: IntoIterator { let mut next_allowed = 0; for (&signal, &state) in from.into_iter() { assert!(signal >= next_allowed); coding::append_varint32(signal - next_allowed, to); coding::append_varint32(state as u32, to); next_allowed = signal + 1; } } fn serialize(from: &BTreeMap) -> Vec { let mut to = Vec::with_capacity(3 * from.len()); append_serialized(from, &mut to); to } struct PointDataIterator<'a> { data: &'a [u8], cur_pos: usize, cur_signal: u32, } impl<'a> PointDataIterator<'a> { fn new(data: &'a [u8]) -> Self { PointDataIterator { data, cur_pos: 0, cur_signal: 0, } } /// Returns an error, `None`, or `Some((signal, state))`. /// Note that errors should be impossible on in-memory data; this returns `Result` for /// validating blobs as they're read from the database. fn next(&mut self) -> Result, Error> { if self.cur_pos == self.data.len() { return Ok(None); } let (signal_delta, p) = coding::decode_varint32(self.data, self.cur_pos) .map_err(|()| format_err!("varint32 decode failure; data={:?} pos={}", self.data, self.cur_pos))?; let (state, p) = coding::decode_varint32(self.data, p) .map_err(|()| format_err!("varint32 decode failure; data={:?} pos={}", self.data, p))?; let signal = self.cur_signal.checked_add(signal_delta) .ok_or_else(|| format_err!("signal overflow: {} + {}", self.cur_signal, signal_delta))?; if state > u16::max_value() as u32 { bail!("state overflow: {}", state); } self.cur_pos = p; self.cur_signal = signal + 1; Ok(Some((signal, state as u16))) } fn to_map(mut self) -> Result, Error> { let mut out = BTreeMap::new(); while let Some((signal, state)) = self.next()? { out.insert(signal, state); } Ok(out) } } /// Representation of a `signal_camera` row. /// `signal_id` is implied by the `Signal` which owns this struct. #[derive(Debug)] pub struct SignalCamera { pub camera_id: i32, pub type_: SignalCameraType, } /// Representation of the `type` field in a `signal_camera` row. #[derive(Debug)] pub enum SignalCameraType { Direct = 0, Indirect = 1, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct ListStateChangesRow { pub when: recording::Time, pub signal: u32, pub state: u16, } impl State { pub fn init(conn: &Connection) -> Result { let mut signals_by_id = State::init_signals(conn)?; State::fill_signal_cameras(conn, &mut signals_by_id)?; Ok(State { signals_by_id, types_by_uuid: State::init_types(conn)?, points_by_time: State::init_points(conn)?, dirty_by_time: BTreeSet::new(), }) } pub fn list_changes_by_time( &self, desired_time: Range, f: &mut dyn FnMut(&ListStateChangesRow)) { // First find the state immediately before. If it exists, include it. if let Some((&when, p)) = self.points_by_time.range(..desired_time.start).next_back() { for (&signal, &state) in &p.after() { f(&ListStateChangesRow { when, signal, state, }); } } // Then include changes up to (but not including) the end time. for (&when, p) in self.points_by_time.range(desired_time.clone()) { let mut it = p.changes(); while let Some((signal, state)) = it.next().expect("in-mem changes is valid") { f(&ListStateChangesRow { when, signal, state, }); } } } pub fn update_signals( &mut self, when: Range, signals: &[u32], states: &[u16]) -> Result<(), Error> { // Do input validation before any mutation. self.update_signals_validate(signals, states)?; // Follow the std::ops::Range convention of considering a range empty if its start >= end. // Bailing early in the empty case isn't just an optimization; apply_observation_end would // be incorrect otherwise. if when.end <= when.start { return Ok(()); } // Apply the end before the start so that the `prev` state can be examined. self.update_signals_end(when.end, signals, states); self.update_signals_start(when.start, signals, states); self.update_signals_middle(when, signals, states); Ok(()) } /// Helper for `update_signals` to do validation. fn update_signals_validate(&self, signals: &[u32], states: &[u16]) -> Result<(), Error> { if signals.len() != states.len() { bail_t!(InvalidArgument, "signals and states must have same length"); } let mut next_allowed = 0u32; for (&signal, &state) in signals.iter().zip(states) { if signal < next_allowed { bail_t!(InvalidArgument, "signals must be monotonically increasing"); } match self.signals_by_id.get(&signal) { None => bail_t!(InvalidArgument, "unknown signal {}", signal), Some(ref s) => { let empty = Vec::new(); let states = self.types_by_uuid.get(&s.type_) .map(|t| &t.states) .unwrap_or(&empty); if signal != 0 && states.binary_search_by_key(&state, |s| s.value).is_err() { bail_t!(FailedPrecondition, "signal {} specifies unknown state {}", signal, state); } }, } next_allowed = signal + 1; } Ok(()) } /// Helper for `update_signals` to apply the end point. fn update_signals_end(&mut self, end: recording::Time, signals: &[u32], states: &[u16]) { let mut prev; let mut changes = BTreeMap::::new(); if let Some((&t, ref mut p)) = self.points_by_time.range_mut(..=end).next_back() { if t == end { // Already have a point at end. Adjust it. prev starts unchanged... prev = p.prev().to_map().expect("in-mem prev is valid"); // ...and then prev and changes are altered to reflect the desired update. State::update_signals_end_maps(signals, states, &mut prev, &mut changes); // If this doesn't alter the new state, don't dirty the database. if changes.is_empty() { return; } // Any existing changes should still be applied. They win over reverting to prev. let mut it = p.changes(); while let Some((signal, state)) = it.next().expect("in-mem changes is valid") { changes.entry(signal).and_modify(|e| *e = state).or_insert(state); } self.dirty_by_time.insert(t); p.swap(&mut Point::new(&prev, &serialize(&changes))); return; } // Don't have a point at end, but do have previous state. prev = p.after(); } else { // No point at or before end. Start from scratch (all signals unknown). prev = BTreeMap::new(); } // Create a new end point if necessary. State::update_signals_end_maps(signals, states, &mut prev, &mut changes); if changes.is_empty() { return; } self.dirty_by_time.insert(end); self.points_by_time.insert(end, Point::new(&prev, &serialize(&changes))); } /// Helper for `update_signals_end`. Adjusts `prev` (the state prior to the end point) to /// reflect the desired update (in `signals` and `states`). Adjusts `changes` (changes to /// execute at the end point) to undo the change. fn update_signals_end_maps(signals: &[u32], states: &[u16], prev: &mut BTreeMap, changes: &mut BTreeMap) { for (&signal, &state) in signals.iter().zip(states) { match prev.entry(signal) { Entry::Vacant(e) => { changes.insert(signal, 0); e.insert(state); }, Entry::Occupied(mut e) => { if state == 0 { changes.insert(signal, *e.get()); e.remove(); } else if *e.get() != state { changes.insert(signal, *e.get()); *e.get_mut() = state; } }, } } } /// Helper for `update_signals` to apply the start point. fn update_signals_start(&mut self, start: recording::Time, signals: &[u32], states: &[u16]) { let prev; if let Some((&t, ref mut p)) = self.points_by_time.range_mut(..=start).next_back() { if t == start { // Reuse existing point at start. prev = p.prev().to_map().expect("in-mem prev is valid"); let mut changes = p.changes().to_map().expect("in-mem changes is valid"); let mut dirty = false; for (&signal, &state) in signals.iter().zip(states) { match changes.entry(signal) { Entry::Occupied(mut e) => { if *e.get() != state { dirty = true; if state == *prev.get(&signal).unwrap_or(&0) { e.remove(); } else { *e.get_mut() = state; } } }, Entry::Vacant(e) => { if signal != 0 { dirty = true; e.insert(state); } }, } } if dirty { p.swap(&mut Point::new(&prev, &serialize(&changes))); self.dirty_by_time.insert(start); } return; } // Create new point at start, using state from previous point. prev = p.after(); } else { // Create new point at start, from scratch. prev = BTreeMap::new(); } let mut changes = BTreeMap::new(); for (&signal, &state) in signals.iter().zip(states) { if state != *prev.get(&signal).unwrap_or(&0) { changes.insert(signal, state); } } if changes.is_empty() { return; } self.dirty_by_time.insert(start); self.points_by_time.insert(start, Point::new(&prev, &serialize(&changes))); } /// Helper for `update_signals` to apply all points in `(when.start, when.end)`. fn update_signals_middle(&mut self, when: Range, signals: &[u32], states: &[u16]) { let mut to_delete = Vec::new(); let after_start = recording::Time(when.start.0+1); for (&t, ref mut p) in self.points_by_time.range_mut(after_start..when.end) { let mut prev = p.prev().to_map().expect("in-mem prev is valid"); // Update prev to reflect desired update. for (&signal, &state) in signals.iter().zip(states) { match prev.entry(signal) { Entry::Occupied(mut e) => { if state == 0 { e.remove_entry(); } else if *e.get() != state { *e.get_mut() = state; } }, Entry::Vacant(e) => { if state != 0 { e.insert(state); } } } } // Trim changes to omit any change to signals. let mut changes = Vec::with_capacity(3*signals.len()); let mut it = p.changes(); let mut next_allowed = 0; let mut dirty = false; while let Some((signal, state)) = it.next().expect("in-memory changes is valid") { if signals.binary_search(&signal).is_ok() { // discard. dirty = true; } else { // keep. assert!(signal >= next_allowed); coding::append_varint32(signal - next_allowed, &mut changes); coding::append_varint32(state as u32, &mut changes); next_allowed = signal + 1; } } if changes.is_empty() { to_delete.push(t); } else { p.swap(&mut Point::new(&prev, &changes)); } if dirty { self.dirty_by_time.insert(t); } } // Delete any points with no more changes. for &t in &to_delete { self.points_by_time.remove(&t).expect("point exists"); } } /// Flushes all pending database changes to the given transaction. /// /// The caller is expected to call `post_flush` afterward if the transaction is /// successfully committed. No mutations should happen between these calls. pub fn flush(&mut self, tx: &Transaction) -> Result<(), Error> { let mut i_stmt = tx.prepare(r#" insert or replace into signal_change (time_90k, changes) values (?, ?) "#)?; let mut d_stmt = tx.prepare(r#" delete from signal_change where time_90k = ? "#)?; for &t in &self.dirty_by_time { match self.points_by_time.entry(t) { Entry::Occupied(ref e) => { let p = e.get(); i_stmt.execute(params![ t.0, &p.data[p.changes_off..], ])?; }, Entry::Vacant(_) => { d_stmt.execute(&[t.0])?; }, } } Ok(()) } /// Marks that the previous `flush` was completed successfully. /// /// See notes there. pub fn post_flush(&mut self) { self.dirty_by_time.clear(); } fn init_signals(conn: &Connection) -> Result, Error> { let mut signals = BTreeMap::new(); let mut stmt = conn.prepare(r#" select id, source_uuid, type_uuid, short_name from signal "#)?; let mut rows = stmt.query(params![])?; while let Some(row) = rows.next()? { let id = row.get(0)?; let source: FromSqlUuid = row.get(1)?; let type_: FromSqlUuid = row.get(2)?; signals.insert(id, Signal { id, source: source.0, type_: type_.0, short_name: row.get(3)?, cameras: Vec::new(), }); } Ok(signals) } fn init_points(conn: &Connection) -> Result, Error> { let mut stmt = conn.prepare(r#" select time_90k, changes from signal_change order by time_90k "#)?; let mut rows = stmt.query(params![])?; let mut points = BTreeMap::new(); let mut cur = BTreeMap::new(); // latest signal -> state, where state != 0 while let Some(row) = rows.next()? { let time_90k = recording::Time(row.get(0)?); let changes = row.get_raw_checked(1)?.as_blob()?; let mut it = PointDataIterator::new(changes); while let Some((signal, state)) = it.next()? { if state == 0 { cur.remove(&signal); } else { cur.insert(signal, state); } } points.insert(time_90k, Point::new(&cur, changes)); } Ok(points) } /// Fills the `cameras` field of the `Signal` structs within the supplied `signals`. fn fill_signal_cameras(conn: &Connection, signals: &mut BTreeMap) -> Result<(), Error> { let mut stmt = conn.prepare(r#" select signal_id, camera_id, type from signal_camera order by signal_id, camera_id "#)?; let mut rows = stmt.query(params![])?; while let Some(row) = rows.next()? { let signal_id = row.get(0)?; let s = signals.get_mut(&signal_id) .ok_or_else(|| format_err!("signal_camera row for unknown signal id {}", signal_id))?; let type_ = row.get(2)?; s.cameras.push(SignalCamera { camera_id: row.get(1)?, type_: match type_ { 0 => SignalCameraType::Direct, 1 => SignalCameraType::Indirect, _ => bail!("unknown signal_camera type {}", type_), }, }); } Ok(()) } fn init_types(conn: &Connection) -> Result, Error> { let mut types = FnvHashMap::default(); let mut stmt = conn.prepare(r#" select type_uuid, value, name, motion, color from signal_type_enum order by type_uuid, value "#)?; let mut rows = stmt.query(params![])?; while let Some(row) = rows.next()? { let type_: FromSqlUuid = row.get(0)?; types.entry(type_.0).or_insert_with(Type::default).states.push(TypeState { value: row.get(1)?, name: row.get(2)?, motion: row.get(3)?, color: row.get(4)?, }); } Ok(types) } pub fn signals_by_id(&self) -> &BTreeMap { &self.signals_by_id } pub fn types_by_uuid(&self) -> &FnvHashMap { & self.types_by_uuid } } /// Representation of a `signal` row. #[derive(Debug)] pub struct Signal { pub id: u32, pub source: Uuid, pub type_: Uuid, pub short_name: String, /// The cameras this signal is associated with. Sorted by camera id, which is unique. pub cameras: Vec, } /// Representation of a `signal_type_enum` row. /// `type_uuid` is implied by the `Type` which owns this struct. #[derive(Debug)] pub struct TypeState { pub value: u16, pub name: String, pub motion: bool, pub color: String, } /// Representation of a signal type; currently this just gathers together the TypeStates. #[derive(Debug, Default)] pub struct Type { /// The possible states associated with this type. They are sorted by value, which is unique. pub states: Vec, } #[cfg(test)] mod tests { use crate::{db, testutil}; use rusqlite::Connection; use super::*; #[test] fn test_point_data_it() { // Example taken from the .sql file. let data = b"\x01\x01\x01\x01\xc4\x01\x02"; let mut it = super::PointDataIterator::new(data); assert_eq!(it.next().unwrap(), Some((1, 1))); assert_eq!(it.next().unwrap(), Some((3, 1))); assert_eq!(it.next().unwrap(), Some((200, 2))); assert_eq!(it.next().unwrap(), None); } #[test] fn test_empty_db() { testutil::init(); let mut conn = Connection::open_in_memory().unwrap(); db::init(&mut conn).unwrap(); let s = State::init(&conn).unwrap(); s.list_changes_by_time(recording::Time::min_value() .. recording::Time::max_value(), &mut |_r| panic!("no changes expected")); } #[test] fn round_trip() { testutil::init(); let mut conn = Connection::open_in_memory().unwrap(); db::init(&mut conn).unwrap(); conn.execute_batch(r#" insert into signal (id, source_uuid, type_uuid, short_name) values (1, x'1B3889C0A59F400DA24C94EBEB19CC3A', x'EE66270FD9C648198B339720D4CBCA6B', 'a'), (2, x'A4A73D9A53424EBCB9F6366F1E5617FA', x'EE66270FD9C648198B339720D4CBCA6B', 'b'); insert into signal_type_enum (type_uuid, value, name, motion, color) values (x'EE66270FD9C648198B339720D4CBCA6B', 1, 'still', 0, 'black'), (x'EE66270FD9C648198B339720D4CBCA6B', 2, 'moving', 1, 'red'); "#).unwrap(); let mut s = State::init(&conn).unwrap(); s.list_changes_by_time(recording::Time::min_value() .. recording::Time::max_value(), &mut |_r| panic!("no changes expected")); const START: recording::Time = recording::Time(140067462600000); // 2019-04-26T11:59:00 const NOW: recording::Time = recording::Time(140067468000000); // 2019-04-26T12:00:00 s.update_signals(START..NOW, &[1, 2], &[2, 1]).unwrap(); let mut rows = Vec::new(); const EXPECTED: &[ListStateChangesRow] = &[ ListStateChangesRow { when: START, signal: 1, state: 2, }, ListStateChangesRow { when: START, signal: 2, state: 1, }, ListStateChangesRow { when: NOW, signal: 1, state: 0, }, ListStateChangesRow { when: NOW, signal: 2, state: 0, }, ]; s.list_changes_by_time(recording::Time::min_value() .. recording::Time::max_value(), &mut |r| rows.push(*r)); assert_eq!(&rows[..], EXPECTED); { let tx = conn.transaction().unwrap(); s.flush(&tx).unwrap(); tx.commit().unwrap(); } drop(s); let s = State::init(&conn).unwrap(); rows.clear(); s.list_changes_by_time(recording::Time::min_value() .. recording::Time::max_value(), &mut |r| rows.push(*r)); assert_eq!(&rows[..], EXPECTED); } }