// This file is part of Moonfire NVR, a security camera digital video recorder. // Copyright (C) 2016 Scott Lamb // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // In addition, as a special exception, the copyright holders give // permission to link the code of portions of this program with the // OpenSSL library under certain conditions as described in each // individual source file, and distribute linked combinations including // the two. // // You must obey the GNU General Public License in all respects for all // of the code used other than OpenSSL. If you modify file(s) with this // exception, you may extend this exception to your version of the // file(s), but you are not obligated to do so. If you do not wish to do // so, delete this exception statement from your version. If you delete // this exception statement from all source files in the program, then // also delete it here. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use clock::Clocks; use db::{Camera, Database}; use dir; use error::Error; use h264; use recording; use std::result::Result; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; use stream; use time; pub static ROTATE_INTERVAL_SEC: i64 = 60; /// Common state that can be used by multiple `Streamer` instances. pub struct Environment<'a, 'b, C, S> where C: 'a + Clocks, S: 'a + stream::Stream { pub clocks: &'a C, pub opener: &'a stream::Opener, pub db: &'b Arc, pub dir: &'b Arc, pub shutdown: &'b Arc, } pub struct Streamer<'a, C, S> where C: 'a + Clocks, S: 'a + stream::Stream { shutdown: Arc, // State below is only used by the thread in Run. rotate_offset_sec: i64, rotate_interval_sec: i64, db: Arc, dir: Arc, syncer_channel: dir::SyncerChannel, clocks: &'a C, opener: &'a stream::Opener, camera_id: i32, short_name: String, url: String, redacted_url: String, } struct WriterState<'a> { writer: dir::Writer<'a>, /// Seconds since epoch at which to next rotate. rotate: i64, } impl<'a, C, S> Streamer<'a, C, S> where C: 'a + Clocks, S: 'a + stream::Stream { pub fn new<'b>(env: &Environment<'a, 'b, C, S>, syncer_channel: dir::SyncerChannel, camera_id: i32, c: &Camera, rotate_offset_sec: i64, rotate_interval_sec: i64) -> Self { Streamer{ shutdown: env.shutdown.clone(), rotate_offset_sec: rotate_offset_sec, rotate_interval_sec: rotate_interval_sec, db: env.db.clone(), dir: env.dir.clone(), syncer_channel: syncer_channel, clocks: env.clocks, opener: env.opener, camera_id: camera_id, short_name: c.short_name.to_owned(), url: format!("rtsp://{}:{}@{}{}", c.username, c.password, c.host, c.main_rtsp_path), redacted_url: format!("rtsp://{}:redacted@{}{}", c.username, c.host, c.main_rtsp_path), } } pub fn short_name(&self) -> &str { &self.short_name } pub fn run(&mut self) { while !self.shutdown.load(Ordering::SeqCst) { if let Err(e) = self.run_once() { let sleep_time = time::Duration::seconds(1); warn!("{}: sleeping for {:?} after error: {}", self.short_name, sleep_time, e); self.clocks.sleep(sleep_time); } } info!("{}: shutting down", self.short_name); } fn run_once(&mut self) -> Result<(), Error> { info!("{}: Opening input: {}", self.short_name, self.redacted_url); let mut stream = self.opener.open(stream::Source::Rtsp(&self.url))?; let realtime_offset = self.clocks.realtime() - self.clocks.monotonic(); // TODO: verify width/height. let extra_data = stream.get_extra_data()?; let video_sample_entry_id = self.db.lock().insert_video_sample_entry(extra_data.width, extra_data.height, extra_data.sample_entry, extra_data.rfc6381_codec)?; debug!("{}: video_sample_entry_id={}", self.short_name, video_sample_entry_id); let mut seen_key_frame = false; let mut state: Option = None; let mut transformed = Vec::new(); let mut prev = None; while !self.shutdown.load(Ordering::SeqCst) { let pkt = stream.get_next()?; let pts = pkt.pts().ok_or_else(|| Error::new("packet with no pts".to_owned()))?; if !seen_key_frame && !pkt.is_key() { continue; } else if !seen_key_frame { debug!("{}: have first key frame", self.short_name); seen_key_frame = true; } let frame_realtime = self.clocks.monotonic() + realtime_offset; let local_time = recording::Time::new(frame_realtime); state = if let Some(s) = state { if frame_realtime.sec > s.rotate && pkt.is_key() { trace!("{}: write on normal rotation", self.short_name); prev = Some(s.writer.close(Some(pts))?); None } else { Some(s) } } else { None }; let mut s = match state { Some(s) => s, None => { let sec = frame_realtime.sec; let r = sec - (sec % self.rotate_interval_sec) + self.rotate_offset_sec; let r = r + if r <= sec { self.rotate_interval_sec } else { 0 }; // On the first recording, set rotate time to not the next rotate offset, but // the one after, so that it's longer than usual rather than shorter than // usual. This ensures there's plenty of frame times to use when calculating // the start time. let r = r + if prev.is_none() { self.rotate_interval_sec } else { 0 }; let w = self.dir.create_writer(&self.syncer_channel, prev, self.camera_id, video_sample_entry_id)?; WriterState{ writer: w, rotate: r, } }, }; let orig_data = match pkt.data() { Some(d) => d, None => return Err(Error::new("packet has no data".to_owned())), }; let transformed_data = if extra_data.need_transform { h264::transform_sample_data(orig_data, &mut transformed)?; transformed.as_slice() } else { orig_data }; s.writer.write(transformed_data, local_time, pts, pkt.is_key())?; state = Some(s); } if let Some(s) = state { s.writer.close(None)?; } Ok(()) } } #[cfg(test)] mod tests { use clock::{self, Clocks}; use db; use error::Error; use h264; use moonfire_ffmpeg; use recording; use std::cmp; use std::sync::{Arc, Mutex}; use std::sync::atomic::{AtomicBool, Ordering}; use stream::{self, Opener, Stream}; use testutil; use time; struct ProxyingStream<'a> { clocks: &'a clock::SimulatedClocks, inner: stream::FfmpegStream, buffered: time::Duration, slept: time::Duration, ts_offset: i64, ts_offset_pkts_left: u32, pkts_left: u32, } impl<'a> ProxyingStream<'a> { fn new(clocks: &'a clock::SimulatedClocks, buffered: time::Duration, inner: stream::FfmpegStream) -> ProxyingStream { clocks.sleep(buffered); ProxyingStream { clocks: clocks, inner: inner, buffered: buffered, slept: time::Duration::seconds(0), ts_offset: 0, ts_offset_pkts_left: 0, pkts_left: 0, } } } impl<'a> Stream for ProxyingStream<'a> { fn get_next(&mut self) -> Result { if self.pkts_left == 0 { return Err(moonfire_ffmpeg::Error::eof()); } self.pkts_left -= 1; let mut pkt = self.inner.get_next()?; // Advance clock to the end of this frame. // Avoid accumulating conversion error by tracking the total amount to sleep and how // much we've already slept, rather than considering each frame in isolation. { let goal = pkt.pts().unwrap() + pkt.duration() as i64; let goal = time::Duration::nanoseconds( goal * 1_000_000_000 / recording::TIME_UNITS_PER_SEC); let duration = goal - self.slept; let buf_part = cmp::min(self.buffered, duration); self.buffered = self.buffered - buf_part; self.clocks.sleep(duration - buf_part); self.slept = goal; } if self.ts_offset_pkts_left > 0 { self.ts_offset_pkts_left -= 1; let old_pts = pkt.pts().unwrap(); let old_dts = pkt.dts(); pkt.set_pts(Some(old_pts + self.ts_offset)); pkt.set_dts(old_dts + self.ts_offset); // In a real rtsp stream, the duration of a packet is not known until the // next packet. ffmpeg's duration is an unreliable estimate. pkt.set_duration(recording::TIME_UNITS_PER_SEC as i32); } Ok(pkt) } fn get_extra_data(&self) -> Result { self.inner.get_extra_data() } } struct MockOpener<'a> { expected_url: String, streams: Mutex>>, shutdown: Arc, } impl<'a> stream::Opener> for MockOpener<'a> { fn open(&self, src: stream::Source) -> Result, Error> { match src { stream::Source::Rtsp(url) => assert_eq!(url, &self.expected_url), stream::Source::File(_) => panic!("expected rtsp url"), }; let mut l = self.streams.lock().unwrap(); match l.pop() { Some(stream) => { trace!("MockOpener returning next stream"); Ok(stream) }, None => { trace!("MockOpener shutting down"); self.shutdown.store(true, Ordering::SeqCst); Err(Error::new("done".to_owned())) }, } } } #[derive(Debug, Eq, PartialEq)] struct Frame { start_90k: i32, duration_90k: i32, is_key: bool, } fn get_frames(db: &db::LockedDatabase, camera_id: i32, recording_id: i32) -> Vec { db.with_recording_playback(camera_id, recording_id, |rec| { let mut it = recording::SampleIndexIterator::new(); let mut frames = Vec::new(); while it.next(&rec.video_index).unwrap() { frames.push(Frame{ start_90k: it.start_90k, duration_90k: it.duration_90k, is_key: it.is_key(), }); } Ok(frames) }).unwrap() } #[test] fn basic() { testutil::init(); // 2015-04-25 00:00:00 UTC let clocks = clock::SimulatedClocks::new(time::Timespec::new(1429920000, 0)); clocks.sleep(time::Duration::seconds(86400)); // to 2015-04-26 00:00:00 UTC let stream = stream::FFMPEG.open(stream::Source::File("src/testdata/clip.mp4")).unwrap(); let mut stream = ProxyingStream::new(&clocks, time::Duration::seconds(2), stream); stream.ts_offset = 180000; // starting pts of the input should be irrelevant stream.ts_offset_pkts_left = u32::max_value(); stream.pkts_left = u32::max_value(); let opener = MockOpener{ expected_url: "rtsp://foo:bar@test-camera/main".to_owned(), streams: Mutex::new(vec![stream]), shutdown: Arc::new(AtomicBool::new(false)), }; let db = testutil::TestDb::new(); let env = super::Environment{ clocks: &clocks, opener: &opener, db: &db.db, dir: &db.dir, shutdown: &opener.shutdown, }; let mut stream; { let l = db.db.lock(); let camera = l.cameras_by_id().get(&testutil::TEST_CAMERA_ID).unwrap(); stream = super::Streamer::new(&env, db.syncer_channel.clone(), testutil::TEST_CAMERA_ID, camera, 0, 3); } stream.run(); assert!(opener.streams.lock().unwrap().is_empty()); db.syncer_channel.flush(); let db = db.db.lock(); // Compare frame-by-frame. Note below that while the rotation is scheduled to happen near // 3-second boundaries (such as 2016-04-26 00:00:03), rotation happens somewhat later: // * the first rotation is always skipped // * the second rotation is deferred until a key frame. assert_eq!(get_frames(&db, testutil::TEST_CAMERA_ID, 1), &[ Frame{start_90k: 0, duration_90k: 90379, is_key: true}, Frame{start_90k: 90379, duration_90k: 89884, is_key: false}, Frame{start_90k: 180263, duration_90k: 89749, is_key: false}, Frame{start_90k: 270012, duration_90k: 89981, is_key: false}, // pts_time 3.0001... Frame{start_90k: 359993, duration_90k: 90055, is_key: true}, Frame{start_90k: 450048, duration_90k: 89967, is_key: false}, Frame{start_90k: 540015, duration_90k: 90021, is_key: false}, // pts_time 6.0001... Frame{start_90k: 630036, duration_90k: 89958, is_key: false}, ]); assert_eq!(get_frames(&db, testutil::TEST_CAMERA_ID, 2), &[ Frame{start_90k: 0, duration_90k: 90011, is_key: true}, Frame{start_90k: 90011, duration_90k: 0, is_key: false}, ]); let mut recordings = Vec::new(); db.list_recordings_by_id(testutil::TEST_CAMERA_ID, 1..3, |r| { recordings.push(r); Ok(()) }).unwrap(); assert_eq!(2, recordings.len()); assert_eq!(1, recordings[0].id); assert_eq!(recording::Time(128700575999999), recordings[0].start); assert_eq!(0, recordings[0].flags); assert_eq!(2, recordings[1].id); assert_eq!(recording::Time(128700576719993), recordings[1].start); assert_eq!(db::RecordingFlags::TrailingZero as i32, recordings[1].flags); } }