// This file is part of Moonfire NVR, a security camera network video recorder. // Copyright (C) 2018 The Moonfire NVR Authors; see AUTHORS and LICENSE.txt. // SPDX-License-Identifier: GPL-v3.0-or-later WITH GPL-3.0-linking-exception. //! Clock interface and implementations for testability. use failure::Error; use log::warn; use parking_lot::Mutex; use std::mem; use std::sync::{mpsc, Arc}; use std::thread; use std::time::Duration as StdDuration; use time::{Duration, Timespec}; use crate::shutdown::ShutdownError; /// Abstract interface to the system clocks. This is for testability. pub trait Clocks: Send + Sync + 'static { /// Gets the current time from `CLOCK_REALTIME`. fn realtime(&self) -> Timespec; /// Gets the current time from a monotonic clock. /// /// On Linux, this uses `CLOCK_BOOTTIME`, which includes suspended time. /// On other systems, it uses `CLOCK_MONOTONIC`. fn monotonic(&self) -> Timespec; /// Causes the current thread to sleep for the specified time. fn sleep(&self, how_long: Duration); /// Calls `rcv.recv_timeout` or substitutes a test implementation. fn recv_timeout<T>( &self, rcv: &mpsc::Receiver<T>, timeout: StdDuration, ) -> Result<T, mpsc::RecvTimeoutError>; } pub fn retry<C, T, E>( clocks: &C, shutdown_rx: &crate::shutdown::Receiver, f: &mut dyn FnMut() -> Result<T, E>, ) -> Result<T, ShutdownError> where C: Clocks, E: Into<Error>, { loop { let e = match f() { Ok(t) => return Ok(t), Err(e) => e.into(), }; shutdown_rx.check()?; let sleep_time = Duration::seconds(1); warn!( "sleeping for {} after error: {}", sleep_time, crate::error::prettify_failure(&e) ); clocks.sleep(sleep_time); } } #[derive(Copy, Clone)] pub struct RealClocks {} impl RealClocks { fn get(&self, clock: libc::clockid_t) -> Timespec { unsafe { let mut ts = mem::MaybeUninit::uninit(); assert_eq!(0, libc::clock_gettime(clock, ts.as_mut_ptr())); let ts = ts.assume_init(); Timespec::new(ts.tv_sec as i64, ts.tv_nsec as i32) } } } impl Clocks for RealClocks { fn realtime(&self) -> Timespec { self.get(libc::CLOCK_REALTIME) } #[cfg(target_os = "linux")] fn monotonic(&self) -> Timespec { self.get(libc::CLOCK_BOOTTIME) } #[cfg(not(target_os = "linux"))] fn monotonic(&self) -> Timespec { self.get(libc::CLOCK_MONOTONIC) } fn sleep(&self, how_long: Duration) { match how_long.to_std() { Ok(d) => thread::sleep(d), Err(e) => warn!("Invalid duration {:?}: {}", how_long, e), }; } fn recv_timeout<T>( &self, rcv: &mpsc::Receiver<T>, timeout: StdDuration, ) -> Result<T, mpsc::RecvTimeoutError> { rcv.recv_timeout(timeout) } } /// Logs a warning if the TimerGuard lives "too long", using the label created by a supplied /// function. pub struct TimerGuard<'a, C: Clocks + ?Sized, S: AsRef<str>, F: FnOnce() -> S + 'a> { clocks: &'a C, label_f: Option<F>, start: Timespec, } impl<'a, C: Clocks + ?Sized, S: AsRef<str>, F: FnOnce() -> S + 'a> TimerGuard<'a, C, S, F> { pub fn new(clocks: &'a C, label_f: F) -> Self { TimerGuard { clocks, label_f: Some(label_f), start: clocks.monotonic(), } } } impl<'a, C, S, F> Drop for TimerGuard<'a, C, S, F> where C: Clocks + ?Sized, S: AsRef<str>, F: FnOnce() -> S + 'a, { fn drop(&mut self) { let elapsed = self.clocks.monotonic() - self.start; if elapsed.num_seconds() >= 1 { let label_f = self.label_f.take().unwrap(); warn!("{} took {}!", label_f().as_ref(), elapsed); } } } /// Simulated clock for testing. #[derive(Clone)] pub struct SimulatedClocks(Arc<SimulatedClocksInner>); struct SimulatedClocksInner { boot: Timespec, uptime: Mutex<Duration>, } impl SimulatedClocks { pub fn new(boot: Timespec) -> Self { SimulatedClocks(Arc::new(SimulatedClocksInner { boot, uptime: Mutex::new(Duration::seconds(0)), })) } } impl Clocks for SimulatedClocks { fn realtime(&self) -> Timespec { self.0.boot + *self.0.uptime.lock() } fn monotonic(&self) -> Timespec { Timespec::new(0, 0) + *self.0.uptime.lock() } /// Advances the clock by the specified amount without actually sleeping. fn sleep(&self, how_long: Duration) { let mut l = self.0.uptime.lock(); *l = *l + how_long; } /// Advances the clock by the specified amount if data is not immediately available. fn recv_timeout<T>( &self, rcv: &mpsc::Receiver<T>, timeout: StdDuration, ) -> Result<T, mpsc::RecvTimeoutError> { let r = rcv.recv_timeout(StdDuration::new(0, 0)); if r.is_err() { self.sleep(Duration::from_std(timeout).unwrap()); } r } }