This brings most things reasonably up-to-date. libpasta's deps are
dragging a bit, keeping us on an older ring to avoid duplication,
and causing us to use three versions of base64. And I need to update
a few of my companion crates' parking_lot dep to match tokio.
A couple reasons for this:
* the docopt crate is "unlikely to see significant future evolution",
and the wider docopt project is "mostly unmaintained at this point".
clap/structopt is more full-featured, has more natural subcommand
support, etc.
* it may allow me to shrink the binary (#70). This change alone seems
to be a slight regression, but it's a step toward getting rid of
regex, which is pretty large. And I feel less ridiculous now that I
don't have two parsing crates anyway; prettydiff was pulling in
structopt.
There are some behavior changes here:
* misc --help output changes and such as you'd expect from switching
argument-parsing libraries
* I properly used PathBuf and OsString for stuff that theoretically
could be non-UTF-8. I haven't tested that it actually made any
difference. I'm also still storing the sample file dirname as "text"
in the database to avoid causing a diff when not doing a schema
change.
* As discussed in #48, say "The Moonfire NVR Authors" at the top of
every file rather than whoever created that file. Have one AUTHORS
file listing everyone.
* Consistently call it a "security camera network video recorder" rather
than "security camera digital video recorder".
The immediate motivation is that Cargo.lock referred to a commit version
in a PR branch of my nix fork that no longer exists. (I didn't know, but
it makes sense, that "git push -f" not only forcibly updates the branch
to refer to a new commit but also gets rid of orphaned commits.) Use a
moonfire branch that I'll keep stable until I'm ready to move on.
I also updated parking_lot and rusqlite to new major versions (nothing
in the interface that I care about has changed) and did a full cargo
update.
This is nicer in a few ways:
* I can use openat so there's no possibility of any kind of a race
involving scanning a different directory than the one used in
other ways (locking, metadata file, adding/removing sample files)
* filename() doesn't need to allocate memory, so it's a bit more
efficient
* dogfooding - I wrote nix::dir.
Add a new schema version 5; now 4 means the directory meta may or may
not be upgraded.
Fixes#65: now it's possible to open the directory even if it lies on a
completely full disk.
This is mostly just "cargo fix --edition" + Cargo.toml changes.
There's one fix for upgrading to NLL in db/writer.rs:
Writer::previously_opened wouldn't build with NLL because of a
double-borrow the previous borrow checker somehow didn't catch.
Restructure to avoid it.
I'll put elective NLL changes in a following commit.
* separate these out into a new file, writer.rs, as dir.rs was getting
unwieldy.
* extract traits for the parts of SampleFileDir and std::fs::File they needed;
set up mock implementations.
* move clock.rs to a new base crate to be accessible from the db crate.
* add tests that exercise all the retry paths.
* bugfix: account for the new recording's bytes when calculating how much to
delete.
* bugfix: when retrying an unlink failure in collect_garbage, we shouldn't
warn about all the recordings no longer existing. Do this by retrying each
step rather than the whole procedure again.
* avoid double-panic scenarios, which I hit while tweaking the mocks. These
are quite annoying to debug as Rust doesn't print information about either
panic. I ended up using lldb to get a backtrace. Better to be cautious about
what we're doing when already panicking.
* give more context on raw::insert_recording errors, which I hit as well while
tweaking the new tests.
This was considering them as 0, so it would under-delete until the next flush
them delete all at once. That effectively doubled the number of bytes not yet
deleted as they're first transferred to garbage, flushed again, then unlinked.
In hindsight, the "post_tx" step in the upgrade process introduced in
e7f5733 doesn't make sense. If the procedure fails at this stage, nothing says
it still needs to be completed. If the sample file dirs have to be updated
after the database, then there should be another database version to mark that
it's fully completed, and indeed that's the purpose version 3 serves. So get
rid of the Upgrader trait and just go back to a simple run function per
version.
In the case of the sample file dir metadata, it actually can happen before the
database transaction; the stuff written to the database later just needs to be
consistent with what it finds if there's an existing metadata file from a
half-completed update.
For safety, ensure there are no unexpected directory contents before
upgrading 1->2, and ensure the metadata matches before upgrading 2->3.
Every recording it starts must be sent to the syncer with at least one sample
written. It will try forever (unless the channel is down, then panic). This
avoids the situation in which it prevents something in the uncommitted
VecDeque from ever being synced and thus any further recordings from being
flushed.
The new approach is to, rather than panicking, retry forever. The assumption
is that if a given operation is failing, a following operation is unlikely to
succeed, so it's simpler to just keep trying the earlier one than come up with
ways to undo it and proceed with later operations.
I still need to apply this approach to the Writer class. It currently unwraps
(crashes) or just gives up on a recording without ever sending it to the
Syncer. Given that recordings are all synced in order, that means further ones
can never be synced.
When list_oldest_recordings was called twice with no intervening flush, it
returned the same rows twice. This led to trying to delete it twice and all
following flushes failing with a "no such recording x/y" message. Now, return
each row only once, and track how many bytes have been returned.
I think dir.rs's logic is still wrong for how many bytes to delete when
multiple recordings are flushed at once (it ignores the bytes added by the
first when computing the bytes to delete for the second), but this is
progress.
I mistakenly thought these had to be monomorphized. (The FnOnce still
does, until rust-lang/rfcs#1909 is implemented.) Turns out this way works
fine. It should result in less compile time / code size, though I didn't check
this.
As noted in schema.sql, this can be used for disambiguation. It also may be
useful in diagnosing data integrity problems.
Also, sneak in a couple minor improvements: better diagnostics in a couple
places, fix to 1->2 upgrade procedure.
This improves the practicality of having many streams (including the doubling
of streams by having main + sub streams for each camera). With these tuned
properly, extra streams don't cause any extra write cycles in normal or error
cases. Consider the worst case in which each RTSP session immediately sends a
single frame and then fails. Moonfire retries every second, so this would
formerly cause one commit per second per stream. (flush_if_sec=0 preserves
this behavior.) Now the commits can be arbitrarily infrequent by setting
higher values of flush_if_sec.
WARNING: this isn't production-ready! I hacked up dir.rs to make tests pass
and "moonfire-nvr run" work in the best-case scenario, but it doesn't handle
errors gracefully. I've been debating what to do when writing a recording
fails. I considered "abandoning" the recording then either reusing or skipping
its id. (in the latter case, marking the file as garbage if it can't be
unlinked immediately). I think now there's no point in abandoning a recording.
If I can't write to that file, there's no reason to believe another will work
better. It's better to retry that recording forever, and perhaps put the whole
directory into an error state that stops recording until those writes go
through. I'm planning to redesign dir.rs to make this happen.
It should reduce compile time / memory usage to put quite a bit of the code
into a separate crate. I also intend to limit visibility of some things to
only within the db crate, but that's for a future change. This is the smallest
move that will compile.