This is a definite work in progress. In particular,
* there's no src/web.rs support yet so it can't be used,
* the code is surprisingly complex, and there's almost no tests so far.
I want to at least get complete branch coverage.
* I may still go back to time_sec rather than time_90k to save RAM and
flash.
I simplified the approach a bit from the earlier goal in design/api.md.
In particular, there's no longer the separate concept of "observation"
vs "prediction". Now the predictions are just observations that extend a
bit beyond now. They may be flushed prematurely and I'll try living with
that to avoid making things even more complex.
This is mostly untested and useless by itself, but it's a starting
point. In particular:
* there's no way to set up signals or add/remove/update events yet
except by manual changes to the database.
* if you associate a signal with a camera then remove the camera,
hitting /api/ will error out.
This is so far completely untested, for use by a new UI prototype.
It creates a new URL endpoint which sends one video/mp4 media segment
per key frame, with the dependent frames included. This means there will
be about one key frame interval of latency (typically about a second).
This seems hard to avoid, as mentioned in issue #59.
Some caveats:
* it doesn't record the peer IP yet, which makes it harder to verify
sessions are valid. This is a little annoying to do in hyper now
(see hyperium/hyper#1410). The direct peer might not be what we want
right now anyway because there's no TLS support yet (see #27). In
the meantime, the sane way to expose Moonfire NVR to the Internet is
via a proxy server, and recording the proxy's IP is not useful.
Maybe better to interpret a RFC 7239 Forwarded header (and/or
the older X-Forwarded-{For,Proto} headers).
* it doesn't ever use Secure (https-only) cookies, for a similar reason.
It's not safe to use even with a tls proxy until this is fixed.
* there's no "moonfire-nvr config" support for inspecting/invalidating
sessions yet.
* in debug builds, logging in is crazy slow. See libpasta/libpasta#9.
Some notes:
* I removed the Javascript "no-use-before-defined" lint, as some of
the functions form a cycle.
* Fixed#20 along the way. I needed to add support for properly
returning non-OK HTTP statuses to signal unauthorized and such.
* I removed the Access-Control-Allow-Origin header support, which was
at odds with the "SameSite=lax" in the cookie header. The "yarn
start" method for running a local proxy server accomplishes the same
thing as the Access-Control-Allow-Origin support in a more secure
manner.
* install.md, install-manual.md, and easy-install.md had a lot of
redundancy. Rework them so the common prefix and suffix are in
install.md and it's clear when to navigate back and forth. This
removes from very stale references to prep.sh and cameras.sql in
install-manual.md (which never should have mentioned these scripts
anyway).
* remove all the SAMPLE_MEDIA_DIR, SAMPLE_FILE_DIR, and
SAMPLE_FILE_PATH stuff from the scripts. This was too complicated
(one variable will suffice) and inconsistent in terminology (a
couple "samples dir" occurrences slipped through review; they
should have been "sample file dir"). It also wasn't really useful
enough because the procedure for a mount point is manual anyway,
and because some installs will have multiple sample file dirs
anyway.
* in the mount point procedure, fix the paths to be consistent. Also
describe the "nofail" and "Requires=" config I have on my machine.
* fix some incorrect info about how to use "moonfire-nvr config" and
describe "flush_if_sec".
These are not actually populated by the code yet. I'm trying to get the
v3 schema frozen as soon as possible; actually using the fields can come
later.
Add some explanation of their value in time.md, along with some general
musing on leap seconds, and a correction on the frequency error of my cameras.
The new numbers are taken from my odroid setup. In particular, the size check
is noticeably slower than what I'd gathered before, enough to show that it
shouldn't be performed on startup.
There may be considerable lag between being fully written and being committed
when using the flush_if_sec feature. Additionally, this is a step toward
listing and viewing recordings before they're fully written. That's a
considerable delay: 60 to 120 seconds for the first recording of a run,
0 to 60 seconds for subsequent recordings.
These recordings aren't yet included in the information returned by
/api/?days=true. They probably should be, but small steps.
This allows each camera to have a main and a sub stream. Previously there was
a field in the schema for the sub stream's url, but it didn't do anything. Now
you can configure individual retention for main and sub streams. They show up
grouped in the UI.
No support for upgrading from schema version 1 yet.
The Javascript is pretty amateurish I'm sure but at least it's something to
iterate from. It's already much more pleasant for browsing through videos in
several ways:
* more responsive to load only a day at a time rather than 90+ days
* much easier to see the same time segment on several cameras
* more pleasant to have the videos load as a popup rather than a link
that blows away your position in an enormous list
* exposes the fancier .mp4 generation options: splitting at lengths
other than the default, trimming to an arbitrary start and end time,
including a subtitle track with timestamps.
There's a slight regression in functionality: I didn't match the former
top-level page which showed how much camera used of its disk allocation and
the total duration of video. This is exposed in the JSON API, so it shouldn't
be too hard to add back.
This is intended to support HTML5 Media Source Extensions, which I expect to
be the most practical way to make a good web UI with a proper scrub bar and
such.
This feature has had very limited testing on Chrome and Firefox, and that was
not entirely successful. More work is needed before it's usable, but this
seems like a helpful progress checkpoint.
This time, I've given up on svg and am using png. The inline svg seems to be
totally stripped out by github's markdown->html conversion, and img links
don't work because .svg files are served with an incorrect Content-Type.
This is more sophisticated than the current implementation. It's an attempt
to address the problems created by the 9 seconds/day of drift I'm seeing for
long-running streams.
The advantages of the new schema are:
* overlapping recordings can be unambiguously described and viewed.
This is a significant problem right now; the clock on my cameras appears to
run faster than the (NTP-synchronized) clock on my NVR. Thus, if an
RTSP session drops and is quickly reconnected, there's likely to be
overlap.
* less I/O is required to view mp4s when there are multiple cameras.
This is a pretty dramatic difference in the number of database read
syscalls with pragma page_size = 1024 (605 -> 39 in one test),
although I'm not sure how much of that maps to actual I/O wait time.
That's probably as dramatic as it is due to overflow page chaining.
But even with larger page sizes, there's an improvement. It helps to
stop interleaving the video_index fields from different cameras.
There are changes to the JSON API to take advantage of this, described
in design/api.md.
There's an upgrade procedure, described in guide/schema.md.
Now it's possible to quickly determine what calendar days have data and then
query recordings for just the day(s) of interest with their returned
{start,end}_time_usec.
I tested these in VLC and QuickTime. Both players appear to ignore the
as the track dimensions, track transformation matrix, box dimensions, and box
justification. I just left them at default values then.
Automated testing is minimal. There's a new test that the resulting .mp4
parses, but I didn't actually ensure correctness of the subtitles in any way.
There's a lot of work left to do on this:
* important latency optimization: the recording threads block
while fsync()ing sample files, which can take 250+ ms. This
should be moved to a separate thread to happen asynchronously.
* write cycle optimizations: several SQLite commits per camera per minute.
* test coverage: this drops testing of the file rotation, and
there are several error paths worth testing.
* ffmpeg oddities to investigate:
* the out-of-order first frame's pts
* measurable delay before returning packets
* it sometimes returns an initial packet it calls a "key" frame that actually
has an SEI recovery point NAL but not an IDR-coded slice NAL, even though
in the input these always seem to come together. This makes playback
starting from this recording not work at all on Chrome. The symptom is
that it loads a player-looking thing with the proper dimensions but
playback never actually starts.
I imagine these are all related but haven't taken the time to dig through
ffmpeg code and understand them. The right thing anyway may be to ditch
ffmpeg for RTSP streaming (perhaps in favor of the live555 library), as
it seems to have other omissions like making it hard/impossible to take
advantage of Sender Reports. In the meantime, I attempted to mitigate
problems by decreasing ffmpeg's probesize.
* handling overlapping recordings: right now if there's too much time drift or
a time jump, you can end up with recordings that the UI won't play without
manual database changes. It's not obvious what the right thing to do is.
* easy camera setup: currently you have to manually insert rows in the SQLite
database and restart.
but I think it's best to get something in to iterate from.
This deletes a lot of code, including:
* the ffmpeg video sink code (instead now using a bit of extra code in Stream
on top of the SampleFileWriter, SampleIndexEncoder, and MoonfireDatabase
code that's been around for a while)
* FileManager (in favor of new code using the database)
* the old UI
* RealFile and friends
* the dependency on protocol buffers, which was used for the config file
(though I'll likely have other reasons for using protocol buffers later)
* even some utilities like IsWord that were just for validating the config