moonfire-nvr/design/api.md

687 lines
24 KiB
Markdown
Raw Normal View History

# Moonfire NVR API
Status: **current**.
## Objective
Allow a JavaScript-based web interface to list cameras and view recordings.
In the future, this is likely to be expanded:
* configuration support
* commandline tool over a UNIX-domain socket
(at least for bootstrapping web authentication)
* mobile interface
## Terminology
*signal:* a timeseries with an enum value. Signals might represent a camera's
motion detection or day/night status. They could also represent an external
input such as a burglar alarm system's zone status.
## Detailed design
All requests for JSON data should be sent with the header
`Accept: application/json` (exactly).
### `POST /api/login`
The request should have an `application/json` body containing a dict with
`username` and `password` keys.
On successful authentication, the server will return an HTTP 204 (no content)
with a `Set-Cookie` header for the `s` cookie, which is an opaque, HttpOnly
(unavailable to Javascript) session identifier.
If authentication or authorization fails, the server will return a HTTP 403
(forbidden) response. Currently the body will be a `text/plain` error message;
future versions will likely be more sophisticated.
### `POST /api/logout`
The request should have an `application/json` body containing
a `csrf` parameter copied from the `session.csrf` of the
top-level API request.
On success, returns an HTTP 204 (no content) responses. On failure, returns a
4xx response with `text/plain` error message.
### `GET /api/`
Returns basic information about the server, including all cameras. Valid
request parameters:
* `days`: a boolean indicating if the days parameter described below
should be included.
* `cameraConfigs`: a boolean indicating if the `camera.config` parameter
described below should be included. This requires the
`read_camera_configs` permission as described in `schema.proto`.
Example request URI (with added whitespace between parameters):
```
/api/?days=true
&cameraConfigs=true
```
The `application/json` response will have a dict as follows:
* `timeZoneName`: the name of the IANA time zone the server is using
to divide recordings into days as described further below.
* `cameras`: a list of cameras. Each is a dict as follows:
* `uuid`: in text format
* `shortName`: a short name (typically one or two words)
* `description`: a longer description (typically a phrase or paragraph)
* `config`: (only included if request parameter `cameraConfigs` is true)
a dictionary describing the configuration of the camera:
* `username`
* `password`
* `onvif_host`
* `streams`: a dict of stream type ("main" or "sub") to a dictionary
describing the stream:
* `retainBytes`: the configured total number of bytes of completed
recordings to retain.
* `minStartTime90k`: the start time of the earliest recording for
this camera, in 90kHz units since 1970-01-01 00:00:00 UTC.
* `maxEndTime90k`: the end time of the latest recording for this
camera, in 90kHz units since 1970-01-01 00:00:00 UTC.
* `totalDuration90k`: the total duration recorded, in 90 kHz units.
This is no greater than `maxEndTime90k - maxStartTime90k`; it will
be lesser if there are gaps in the recorded data.
* `totalSampleFileBytes`: the total number of bytes of sample data
(the `mdat` portion of a `.mp4` file).
* `days`: (only included if request pararameter `days` is true)
dictionary representing calendar days (in the server's time zone)
with non-zero total duration of recordings for that day. The keys
are of the form `YYYY-mm-dd`; the values are objects with the
following attributes:
* `totalDuration90k` is the total duration recorded during that
day. If a recording spans a day boundary, some portion of it
is accounted to each day.
* `startTime90k` is the start of that calendar day in the
server's time zone.
* `endTime90k` is the end of that calendar day in the server's
time zone. It is usually 24 hours after the start time. It
might be 23 hours or 25 hours during spring forward or fall
back, respectively.
* `signals`: a list of all signals known to the server. Each is a dictionary
with the following properties:
* `id`: an integer identifier.
* `shortName`: a unique, human-readable description of the signal
* `cameras`: a map of associated cameras' UUIDs to the type of association:
`direct` or `indirect`. See `db/schema.sql` for more description.
* `type`: a UUID, expected to match one of `signalTypes`.
* `days`: as in `cameras.streams.days` above.
**status: unimplemented**
* `signalTypes`: a list of all known signal types.
* `uuid`: in text format.
* `states`: a map of all possible states of the enumeration to more
information about them:
* `color`: a recommended color to use in UIs to represent this state,
as in the [HTML specification](https://html.spec.whatwg.org/#colours).
* `motion`: if present and true, directly associated cameras will be
considered to have motion when this signal is in this state.
* `session`: if logged in, a dict with the following properties:
* `username`
* `csrf`: a cross-site request forgery token for use in `POST` requests.
Example response:
```json
{
"timeZoneName": "America/Los_Angeles",
"cameras": [
{
"uuid": "fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe",
"shortName": "driveway",
"description": "Hikvision DS-2CD2032 overlooking the driveway from east",
"config": {
"onvif_host": "192.168.1.100",
"user": "admin",
"password": "12345",
},
"streams": {
"main": {
"retainBytes": 536870912000,
"minStartTime90k": 130888729442361,
"maxEndTime90k": 130985466591817,
"totalDuration90k": 96736169725,
"totalSampleFileBytes": 446774393937,
"days": {
"2016-05-01": {
"endTime90k": 131595516000000,
"startTime90k": 131587740000000,
"totalDuration90k": 52617609
},
"2016-05-02": {
"endTime90k": 131603292000000,
"startTime90k": 131595516000000,
"totalDuration90k": 20946022
}
}
}
}
},
...
],
"signals": [
{
"id": 1,
"shortName": "driveway motion",
"cameras": {
"fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe": "direct"
},
"type": "ee66270f-d9c6-4819-8b33-9720d4cbca6b",
"days": {
"2016-05-01": {
"endTime90k": 131595516000000,
"startTime90k": 131587740000000,
"totalDuration90k": 5400000
}
}
}
],
"signalTypes": [
{
"uuid": "ee66270f-d9c6-4819-8b33-9720d4cbca6b",
"states": {
0: {
"name": "unknown",
"color": "#000000"
},
1: {
"name": "off",
"color": "#888888"
},
2: {
"name": "on",
"color": "#ff8888",
"motion": true
}
}
}
],
"session": {
"username": "slamb",
"csrf": "2DivvlnKUQ9JD4ao6YACBJm8XK4bFmOc"
}
}
```
### `GET /api/cameras/<uuid>/`
Returns information for the camera with the given URL. As in the like section
of `GET /api/` with the `days` parameter set and the `cameraConfigs` parameter
unset.
2016-05-02 11:38:52 -04:00
Example response:
```json
{
"description": "",
"streams": {
"main": {
"days": {
"2016-05-01": {
"endTime90k": 131595516000000,
"startTime90k": 131587740000000,
"totalDuration90k": 52617609
},
"2016-05-02": {
"endTime90k": 131603292000000,
"startTime90k": 131595516000000,
"totalDuration90k": 20946022
}
},
"maxEndTime90k": 131598273666690,
"minStartTime90k": 131590386129355,
"retainBytes": 104857600,
"totalDuration90k": 73563631,
"totalSampleFileBytes": 98901406
2016-05-02 11:38:52 -04:00
}
},
"shortName": "driveway"
2016-05-02 11:38:52 -04:00
}
```
### `GET /api/cameras/<uuid>/<stream>/recordings`
Returns information about recordings.
Valid request parameters:
* `startTime90k` and and `endTime90k` limit the data returned to only
recordings which overlap with the given half-open interval. Either or both
may be absent; they default to the beginning and end of time, respectively.
2017-10-17 12:00:05 -04:00
* `split90k` causes long runs of recordings to be split at the next
convenient boundary after the given duration.
* TODO(slamb): `continue` to support paging. (If data is too large, the
server should return a `continue` key which is expected to be returned on
following requests.)
Returns a JSON object. Under the key `recordings` is an array of recordings in
arbitrary order. Each recording object has the following properties:
* `startId`. The id of this recording, which can be used with `/view.mp4`
to retrieve its content.
* `endId` (optional). If absent, this object describes a single recording.
If present, this indicates that recordings `startId-endId` (inclusive)
together are as described. Adjacent recordings from the same RTSP session
may be coalesced in this fashion to reduce the amount of redundant data
transferred.
* `firstUncommitted` (optional). If this range is not fully committed to the
database, the first id that is uncommitted. This is significant because
it's possible that after a crash and restart, this id will refer to a
completely different recording. That recording will have a different
`openId`.
* `growing` (optional). If this boolean is true, the recording `endId` is
still being written to. Accesses to this id (such as `view.mp4`) may
retrieve more data than described here if not bounded by duration.
Additionally, if `startId` == `endId`, the start time of the recording is
"unanchored" and may change in subsequent accesses.
* `openId`. Each time Moonfire NVR starts in read-write mode, it is assigned
an increasing "open id". This field is the open id as of when these
recordings were written. This can be used to disambiguate ids referring to
uncommitted recordings.
* `startTime90k`: the start time of the given recording. Note this may be
less than the requested `startTime90k` if this recording was ongoing
at the requested time.
* `endTime90k`: the end time of the given recording. Note this may be
greater than the requested `endTime90k` if this recording was ongoing at
the requested time.
* `videoSampleEntryId`: a reference to an entry in the `videoSampleEntries`
map. These ids are strings so that they can serve as JSON object keys.
* `videoSamples`: the number of samples (aka frames) of video in this
recording.
Under the property `videoSampleEntries`, an object mapping ids to objects with
the following properties:
* `sha1`: a SHA-1 hash of the ISO/IEC 14496-12 section 8.5.2
`VisualSampleEntry` bytes. The actual bytes can be retrieved, wrapped into
an initialization segment `.mp4`, at the URL `/api/init/<sha1>.mp4`.
* `width`: the stored width in pixels.
* `height`: the stored height in pixels.
* `pixelHSpacing`: the relative width of a pixel, as in a ISO/IEC 14496-12
section 12.1.4.3 `PixelAspectRatioBox`. If absent, assumed to be 1.
* `pixelVSpacing`: the relative height of a pixel, as in a ISO/IEC 14496-12
section 12.1.4.3 `PixelAspectRatioBox`. If absent, assumed to be 1.
Example request URI (with added whitespace between parameters):
```
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/recordings
?startTime90k=130888729442361
&endTime90k=130985466591817
```
Example response:
```json
{
"recordings": [
{
"startId": 1,
"startTime90k": 130985461191810,
"endTime90k": 130985466591817,
"sampleFileBytes": 8405564,
"videoSampleEntryId": "1",
},
{
"endTime90k": 130985461191810,
...
},
...
],
"videoSampleEntries": {
"1": {
"sha1": "81710c9c51a02cc95439caa8dd3bc12b77ffe767",
"width": 1280,
"height": 720
}
},
}
```
### `GET /api/cameras/<uuid>/<stream>/view.mp4`
Requires the `view_video` permission.
Returns a `.mp4` file, with an etag and support for range requests. The MIME
type will be `video/mp4`, with a `codecs` parameter as specified in
[RFC 6381][rfc-6381].
Expected query parameters:
* `s` (one or more): a string of the form
`START_ID[-END_ID][@OPEN_ID][.[REL_START_TIME]-[REL_END_TIME]]`. This
specifies recording segments to include. The produced `.mp4` file will be a
concatenation of the segments indicated by all `s` parameters. The ids to
retrieve are as returned by the `/recordings` URL. The open id is optional
and will be enforced if present; it's recommended for disambiguation when
the requested range includes uncommitted recordings. The optional start and
end times are in 90k units and relative to the start of the first specified
id. These can be used to clip the returned segments. Note they can be used
to skip over some ids entirely; this is allowed so that the caller doesn't
need to know the start time of each interior id. If there is no key frame
at the desired relative start time, frames back to the last key frame will
be included in the returned data, and an edit list will instruct the
viewer to skip to the desired start time.
* `ts` (optional): should be set to `true` to request a subtitle track be
added with human-readable recording timestamps.
Example request URI to retrieve all of recording id 1 from the given camera:
```
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.mp4?s=1
```
Example request URI to retrieve all of recording ids 15 from the given camera,
with timestamp subtitles:
```
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.mp4?s=1-5&ts=true
```
Example request URI to retrieve recording id 1, skipping its first 26
90,000ths of a second:
```
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.mp4?s=1.26
```
TODO: error behavior on missing segment. It should be a 404, likely with an
`application/json` body describing what portion if any (still) exists.
### `GET /api/cameras/<uuid>/<stream>/view.mp4.txt`
Returns a `text/plain` debugging string for the `.mp4` generated by the
same URL minus the `.txt` suffix.
### `GET /api/cameras/<uuid>/<stream>/view.m4s`
Returns a `.mp4` suitable for use as a [HTML5 Media Source Extensions
media segment][media-segment]. The MIME type will be `video/mp4`, with a
`codecs` parameter as specified in [RFC 6381][rfc-6381].
Expected query parameters:
* `s` (one or more): as with the `.mp4` URL, except that media segments
can't contain edit lists so none will be generated. TODO: maybe add a
`Leading-Time:` header to indicate how many leading 90,000ths of a second
are present, so that the caller can trim it in some other way.
It's recommended that each `.m4s` retrieval be for at most one Moonfire NVR
recording segment for several reasons:
* The Media Source Extension API appears structured for adding a complete
segment at a time. Large media segments thus impose significant latency on
seeking.
* There is currently a hard limit of 4 GiB of data because the `.m4s` uses a
single `moof` followed by a single `mdat`; the former references the
latter with 32-bit offsets.
* There's currently no way to generate an initialization segment for more
than one video sample entry, so a `.m4s` that uses more than one video
sample entry can't be used.
### `GET /api/cameras/<uuid>/<stream>/view.m4s.txt`
Returns a `text/plain` debugging string for the `.mp4` generated by the same
URL minus the `.txt` suffix.
### `GET /api/cameras/<uuid>/<stream>/live.m4s`
Initiate a WebSocket stream for chunks of video. Expects the standard
WebSocket headers as described in [RFC 6455][rfc-6455] and (if authentication
is required) the `s` cookie.
The server will send a sequence of binary messages. Each message corresponds
to one run (GOP) of video: a key (IDR) frame and all other frames which depend
on it. These are encoded as a `.mp4` media segment. The following headers will
be included:
* `X-Recording-Id`: the open id, a period, and the recording id of the
recording these frames belong to.
* `X-Recording-Start`: the timestamp (in Moonfire NVR's usual 90,000ths
of a second) of the start of the recording. Note that if the recording
is "unanchored" (as described in `GET /api/.../recordings`), the
recording's start time may change before it is completed.
* `X-Time-Range`: the relative start and end times of these frames within
the recording, in the same format as `REL_START_TIME` and `REL_END_TIME`
above.
Cameras are typically configured to have about one key frame per second, so
there will be one part per second when the stream is working. If the stream is
not connected, the HTTP GET request will wait until the stream is established,
possibly forever.
Example request URI:
```
/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/live.m4s
```
Example binary message sequence:
```
Content-Type: video/mp4; codecs="avc1.640028"
X-Recording-Id: 42.5680
X-Recording-Start: 130985461191810
X-Time-Range: 5220058-5400061
X-Video-Sample-Entry-Sha1: 25fad1b92c344dadc0473a783dff957b0d7d56bb
binary mp4 data
```
```
Content-Type: video/mp4; codecs="avc1.640028"
X-Recording-Id: 42.5681
X-Recording-Start: 130985461191822
X-Time-Range: 0-180002
X-Video-Sample-Entry-Sha1: 25fad1b92c344dadc0473a783dff957b0d7d56bb
binary mp4 data
```
```
Content-Type: video/mp4; codecs="avc1.640028"
X-Recording-Id: 42.5681
X-Recording-Start: 130985461191822
X-Time-Range: 180002-360004
X-Video-Sample-Entry-Sha1: 25fad1b92c344dadc0473a783dff957b0d7d56bb
binary mp4 data
```
These segments are exactly the same as ones that can be retrieved at the
following URLs, respectively:
* `/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.m4s?s=5680@42.5220058-5400061`
* `/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.m4s?s=5681@42.0-180002`
* `/api/cameras/fd20f7a2-9d69-4cb3-94ed-d51a20c3edfe/main/view.m4s?s=5681@42.180002-360004`
Note: an earlier version of this API used a `multipart/mixed` segment instead,
compatible with the [multipart-stream-js][multipart-stream-js] library. The
problem with this approach is that browsers have low limits on the number of
active HTTP/1.1 connections: six in Chrome's case. The WebSocket limit is much
higher (256), allowing browser-side Javascript to stream all active camera
streams simultaneously as well as making other simultaneous HTTP requests.
### `GET /api/init/<sha1>.mp4`
Returns a `.mp4` suitable for use as a [HTML5 Media Source Extensions
initialization segment][init-segment]. The MIME type will be `video/mp4`, with
a `codecs` parameter as specified in [RFC 6381][rfc-6381].
### `GET /api/init/<sha1>.mp4.txt`
Returns a `text/plain` debugging string for the `.mp4` generated by the
same URL minus the `.txt` suffix.
### `GET /api/signals`
Returns an `application/json` response with state of every signal for the
requested timespan.
Valid request parameters:
* `startTime90k` and and `endTime90k` limit the data returned to only
events relevant to the given half-open interval. Either or both
may be absent; they default to the beginning and end of time, respectively.
This will return the current state as of the latest change (to any signal)
before the start time (if any), then all changes in the interval. This
allows the caller to determine the state at every moment during the
selected timespan, as well as observe all events (even instantaneous
ones).
Responses are several parallel arrays for each observation:
* `times90k`: the time of each event. Events are given in ascending order.
* `signalIds`: the id of the relevant signal; expected to match one in the
`signals` field of the `/api/` response.
* `states`: the new state.
Example request URI (with added whitespace between parameters):
```
/api/signals
?startTime90k=130888729442361
&endTime90k=130985466591817
```
Example response:
```json
{
"signalIds": [1, 1, 1],
"states": [1, 2, 1],
"times90k": [130888729440000, 130985424000000, 130985418600000]
}
```
This represents the following observations:
1. time 130888729440000 was the last change before the requested start;
signal 1 (`driveway motion`) was in state 1 (`off`).
2. signal 1 entered state 2 (`on`) at time 130985424000000.
3. signal 1 entered state 1 (`off`) at time 130985418600000.
### `POST /api/signals`
Requires the `update_signals` permission.
Alters the state of a signal.
A typical client might be a subscriber of a camera's built-in motion
detection event stream or of a security system's zone status event stream.
It makes a request on every event or on every 30 second timeout, predicting
that the state will last for a minute. This prediction may be changed later.
Writing to the near future in this way ensures that the UI never displays
`unknown` when the client is actively managing the signal.
Some requests may instead backfill earlier history, such as when a video
analytics client starts up and analyzes all video segments recorded since it
last ran. These will specify beginning and end times.
The request should have an `application/json` body describing the change to
make. It should be a dict with these attributes:
* `signalIds`: a list of signal ids to change. Must be sorted.
* `states`: a list (one per `signalIds` entry) of states to set.
* `startTime90k`: (optional) The start of the observation in 90 kHz units
since 1970-01-01 00:00:00 UTC; commonly taken from an earlier response. If
absent, assumed to be now.
* `endBase`: if `epoch`, `relEndTime90k` is relative to 1970-01-01 00:00:00
UTC. If `now`, epoch is relative to the current time.
* `relEndTime90k` (optional): The end of the observation, relative to the
specified base. Note this time is allowed to be in the future.
The response will be an `application/json` body dict with the following
attributes:
* `time90k`: the current time. When the request's `startTime90k` is absent
and/or its `endBase` is `now`, this is needed to know the effect of the
earlier request.
Example request sequence:
#### Request 1
The client responsible for reporting live driveway motion has just started. It
observes motion now. It records no history and predicts there will be motion
for the next minute.
Request:
```json
{
"signalIds": [1],
"states": [2],
"endBase": "now",
"relEndTime90k": 5400000
}
```
Response:
```json
{
"time90k": 140067468000000
}
```
#### Request 2
30 seconds later (half the prediction interval), the client still observes
motion. It leaves the prior data alone and predicts the motion will continue.
Request:
```json
{
"signalIds": [1],
"states": [2],
"endBase": "now",
"relEndTime90k": 5400000
}
```
Response:
```json
{
"time90k": 140067470700000
}
```
### Request 3
5 seconds later, the client observes motion has ended. It leaves the prior
data alone and predicts no more motion.
Request:
```json
{
"signalIds": [1],
"states": [2],
"endBase": "now",
"relEndTime90k": 5400000
}
}
```
Response:
```json
{
"time90k": 140067471150000
}
```
[media-segment]: https://w3c.github.io/media-source/isobmff-byte-stream-format.html#iso-media-segments
[init-segment]: https://w3c.github.io/media-source/isobmff-byte-stream-format.html#iso-init-segments
[rfc-6381]: https://tools.ietf.org/html/rfc6381
[rfc-6455]: https://tools.ietf.org/html/rfc6455
[multipart-mixed-js]: https://github.com/scottlamb/multipart-mixed-js