moonfire-nvr/server/src/main.rs

180 lines
5.1 KiB
Rust
Raw Normal View History

// This file is part of Moonfire NVR, a security camera network video recorder.
// Copyright (C) 2021 The Moonfire NVR Authors; see AUTHORS and LICENSE.txt.
// SPDX-License-Identifier: GPL-v3.0-or-later WITH GPL-3.0-linking-exception.
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
#![cfg_attr(all(feature = "nightly", test), feature(test))]
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
use log::{debug, error};
2021-03-10 11:12:49 -05:00
use std::fmt::Write;
2020-04-22 01:19:17 -04:00
use std::str::FromStr;
use structopt::StructOpt;
#[cfg(feature = "analytics")]
mod analytics;
/// Stub implementation of analytics module when not compiled with TensorFlow Lite.
#[cfg(not(feature = "analytics"))]
mod analytics {
use failure::{bail, Error};
pub struct ObjectDetector;
impl ObjectDetector {
pub fn new() -> Result<std::sync::Arc<ObjectDetector>, Error> {
bail!("Recompile with --features=analytics for object detection.");
}
}
pub struct ObjectDetectorStream;
impl ObjectDetectorStream {
pub fn new(
_par: ffmpeg::avcodec::InputCodecParameters<'_>,
_detector: &ObjectDetector,
) -> Result<Self, Error> {
unimplemented!();
}
pub fn process_frame(
&mut self,
_pkt: &ffmpeg::avcodec::Packet<'_>,
_detector: &ObjectDetector,
) -> Result<(), Error> {
unimplemented!();
}
}
}
mod body;
mod cmds;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
mod h264;
mod json;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
mod mp4;
mod slices;
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
mod stream;
mod streamer;
mod web;
#[derive(StructOpt)]
#[structopt(
name = "moonfire-nvr",
about = "security camera network video recorder"
)]
enum Args {
/// Checks database integrity (like fsck).
Check(cmds::check::Args),
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
/// Interactively edits configuration.
Config(cmds::config::Args),
/// Initializes a database.
Init(cmds::init::Args),
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
/// Logs in a user, returning the session cookie.
///
/// This is a privileged command that directly accesses the database. It doesn't check the
/// user's password and even can be used to create sessions with permissions the user doesn't
/// have.
Login(cmds::login::Args),
/// Runs the server, saving recordings and allowing web access.
Run(cmds::run::Args),
/// Runs a SQLite3 shell on Moonfire NVR's index database.
///
/// Note this locks the database to prevent simultaneous access with a running server. The
/// server maintains cached state which could be invalidated otherwise.
Sql(cmds::sql::Args),
/// Translates between integer and human-readable timestamps.
Ts(cmds::ts::Args),
/// Upgrades to the latest database schema.
Upgrade(cmds::upgrade::Args),
}
impl Args {
fn run(&self) -> Result<i32, failure::Error> {
match self {
Args::Check(ref a) => cmds::check::run(a),
Args::Config(ref a) => cmds::config::run(a),
Args::Init(ref a) => cmds::init::run(a),
Args::Login(ref a) => cmds::login::run(a),
Args::Run(ref a) => cmds::run::run(a),
Args::Sql(ref a) => cmds::sql::run(a),
Args::Ts(ref a) => cmds::ts::run(a),
Args::Upgrade(ref a) => cmds::upgrade::run(a),
}
}
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
2021-03-10 11:12:49 -05:00
/// Custom panic hook that logs instead of directly writing to stderr.
///
/// This means it includes a timestamp and is more recognizable as a serious
/// error (including console color coding by default, a format `lnav` will
/// recognize, etc.).
fn panic_hook(p: &std::panic::PanicInfo) {
let mut msg;
if let Some(l) = p.location() {
msg = format!("panic at '{}'", l);
} else {
msg = "panic".to_owned();
}
if let Some(s) = p.payload().downcast_ref::<&str>() {
write!(&mut msg, ": {}", s).unwrap();
}
let b = failure::Backtrace::new();
if b.is_empty() {
write!(
&mut msg,
"\n\n(set environment variable RUST_BACKTRACE=1 to see backtraces)"
)
.unwrap();
} else {
write!(&mut msg, "\n\nBacktrace:\n{}", b).unwrap();
}
error!("{}", msg);
}
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
fn main() {
let args = Args::from_args();
let mut h = mylog::Builder::new()
.set_format(
::std::env::var("MOONFIRE_FORMAT")
.map_err(|_| ())
.and_then(|s| mylog::Format::from_str(&s))
.unwrap_or(mylog::Format::Google),
)
.set_color(
::std::env::var("MOONFIRE_COLOR")
.map_err(|_| ())
.and_then(|s| mylog::ColorMode::from_str(&s))
.unwrap_or(mylog::ColorMode::Auto),
)
.set_spec(&::std::env::var("MOONFIRE_LOG").unwrap_or("info".to_owned()))
.build();
h.clone().install().unwrap();
let use_panic_hook = ::std::env::var("MOONFIRE_PANIC_HOOK")
.map(|s| s != "false" && s != "0")
.unwrap_or(true);
if use_panic_hook {
std::panic::set_hook(Box::new(&panic_hook));
}
2021-03-10 11:12:49 -05:00
let r = {
let _a = h.async_scope();
args.run()
};
match r {
Err(e) => {
error!("Exiting due to error: {}", base::prettify_failure(&e));
::std::process::exit(1);
}
Ok(rv) => {
debug!("Exiting with status {}", rv);
std::process::exit(rv)
}
Rust rewrite I should have submitted/pushed more incrementally but just played with it on my computer as I was learning the language. The new Rust version more or less matches the functionality of the current C++ version, although there are many caveats listed below. Upgrade notes: when moving from the C++ version, I recommend dropping and recreating the "recording_cover" index in SQLite3 to pick up the addition of the "video_sync_samples" column: $ sudo systemctl stop moonfire-nvr $ sudo -u moonfire-nvr sqlite3 /var/lib/moonfire-nvr/db/db sqlite> drop index recording_cover; sqlite3> create index ...rest of command as in schema.sql...; sqlite3> ^D Some known visible differences from the C++ version: * .mp4 generation queries SQLite3 differently. Before it would just get all video indexes in a single query. Now it leads with a query that should be satisfiable by the covering index (assuming the index has been recreated as noted above), then queries individual recording's indexes as needed to fill a LRU cache. I believe this is roughly similar speed for the initial hit (which generates the moov part of the file) and significantly faster when seeking. I would have done it a while ago with the C++ version but didn't want to track down a lru cache library. It was easier to find with Rust. * On startup, the Rust version cleans up old reserved files. This is as in the design; the C++ version was just missing this code. * The .html recording list output is a little different. It's in ascending order, with the most current segment shorten than an hour rather than the oldest. This is less ergonomic, but it was easy. I could fix it or just wait to obsolete it with some fancier JavaScript UI. * commandline argument parsing and logging have changed formats due to different underlying libraries. * The JSON output isn't quite right (matching the spec / C++ implementation) yet. Additional caveats: * I haven't done any proof-reading of prep.sh + install instructions. * There's a lot of code quality work to do: adding (back) comments and test coverage, developing a good Rust style. * The ffmpeg foreign function interface is particularly sketchy. I'd eventually like to switch to something based on autogenerated bindings. I'd also like to use pure Rust code where practical, but once I do on-NVR motion detection I'll need to existing C/C++ libraries for speed (H.264 decoding + OpenCL-based analysis).
2016-11-25 17:34:00 -05:00
}
}