minio/pkg/dsync/drwmutex.go
Harshavardhana 4550ac6fff
fix: refactor locks to apply them uniquely per node (#11052)
This refactor is done for few reasons below

- to avoid deadlocks in scenarios when number
  of nodes are smaller < actual erasure stripe
  count where in N participating local lockers
  can lead to deadlocks across systems.

- avoids expiry routines to run 1000 of separate
  network operations and routes per disk where
  as each of them are still accessing one single
  local entity.

- it is ideal to have since globalLockServer
  per instance.

- In a 32node deployment however, each server
  group is still concentrated towards the
  same set of lockers that partipicate during
  the write/read phase, unlike previous minio/dsync
  implementation - this potentially avoids send
  32 requests instead we will still send at max
  requests of unique nodes participating in a
  write/read phase.

- reduces overall chattiness on smaller setups.
2020-12-10 07:28:37 -08:00

483 lines
13 KiB
Go

/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dsync
import (
"context"
"errors"
"math/rand"
"os"
"sync"
"time"
"github.com/minio/minio/pkg/console"
)
// Indicator if logging is enabled.
var dsyncLog bool
func init() {
// Check for MINIO_DSYNC_TRACE env variable, if set logging will be enabled for failed REST operations.
dsyncLog = os.Getenv("MINIO_DSYNC_TRACE") == "1"
}
func log(format string, data ...interface{}) {
if dsyncLog {
console.Printf(format, data...)
}
}
// DRWMutexAcquireTimeout - tolerance limit to wait for lock acquisition before.
const DRWMutexAcquireTimeout = 1 * time.Second // 1 second.
const drwMutexInfinite = 1<<63 - 1
// A DRWMutex is a distributed mutual exclusion lock.
type DRWMutex struct {
Names []string
writeLocks []string // Array of nodes that granted a write lock
readersLocks [][]string // Array of array of nodes that granted reader locks
m sync.Mutex // Mutex to prevent multiple simultaneous locks from this node
clnt *Dsync
}
// Granted - represents a structure of a granted lock.
type Granted struct {
index int
lockUID string // Locked if set with UID string, unlocked if empty
}
func (g *Granted) isLocked() bool {
return isLocked(g.lockUID)
}
func isLocked(uid string) bool {
return len(uid) > 0
}
// NewDRWMutex - initializes a new dsync RW mutex.
func NewDRWMutex(clnt *Dsync, names ...string) *DRWMutex {
restClnts, _ := clnt.GetLockers()
return &DRWMutex{
writeLocks: make([]string, len(restClnts)),
Names: names,
clnt: clnt,
}
}
// Lock holds a write lock on dm.
//
// If the lock is already in use, the calling go routine
// blocks until the mutex is available.
func (dm *DRWMutex) Lock(id, source string) {
isReadLock := false
dm.lockBlocking(context.Background(), id, source, isReadLock, Options{
Timeout: drwMutexInfinite,
})
}
// Options lock options.
type Options struct {
Timeout time.Duration
Tolerance int
}
// GetLock tries to get a write lock on dm before the timeout elapses.
//
// If the lock is already in use, the calling go routine
// blocks until either the mutex becomes available and return success or
// more time has passed than the timeout value and return false.
func (dm *DRWMutex) GetLock(ctx context.Context, id, source string, opts Options) (locked bool) {
isReadLock := false
return dm.lockBlocking(ctx, id, source, isReadLock, opts)
}
// RLock holds a read lock on dm.
//
// If one or more read locks are already in use, it will grant another lock.
// Otherwise the calling go routine blocks until the mutex is available.
func (dm *DRWMutex) RLock(id, source string) {
isReadLock := true
dm.lockBlocking(context.Background(), id, source, isReadLock, Options{
Timeout: drwMutexInfinite,
})
}
// GetRLock tries to get a read lock on dm before the timeout elapses.
//
// If one or more read locks are already in use, it will grant another lock.
// Otherwise the calling go routine blocks until either the mutex becomes
// available and return success or more time has passed than the timeout
// value and return false.
func (dm *DRWMutex) GetRLock(ctx context.Context, id, source string, opts Options) (locked bool) {
isReadLock := true
return dm.lockBlocking(ctx, id, source, isReadLock, opts)
}
const (
lockRetryInterval = 1 * time.Second
)
// lockBlocking will try to acquire either a read or a write lock
//
// The function will loop using a built-in timing randomized back-off
// algorithm until either the lock is acquired successfully or more
// time has elapsed than the timeout value.
func (dm *DRWMutex) lockBlocking(ctx context.Context, id, source string, isReadLock bool, opts Options) (locked bool) {
restClnts, _ := dm.clnt.GetLockers()
r := rand.New(rand.NewSource(time.Now().UnixNano()))
// Create lock array to capture the successful lockers
locks := make([]string, len(restClnts))
log("lockBlocking %s/%s for %#v: lockType readLock(%t), additional opts: %#v\n", id, source, dm.Names, isReadLock, opts)
// Add total timeout
ctx, cancel := context.WithTimeout(ctx, opts.Timeout)
defer cancel()
// Tolerance is not set, defaults to half of the locker clients.
tolerance := opts.Tolerance
if tolerance == 0 {
tolerance = len(restClnts) / 2
}
// Quorum is effectively = total clients subtracted with tolerance limit
quorum := len(restClnts) - tolerance
if !isReadLock {
// In situations for write locks, as a special case
// to avoid split brains we make sure to acquire
// quorum + 1 when tolerance is exactly half of the
// total locker clients.
if quorum == tolerance {
quorum++
}
}
tolerance = len(restClnts) - quorum
for {
select {
case <-ctx.Done():
return false
default:
// Try to acquire the lock.
if locked = lock(ctx, dm.clnt, &locks, id, source, isReadLock, tolerance, quorum, dm.Names...); locked {
dm.m.Lock()
// If success, copy array to object
if isReadLock {
// Append new array of strings at the end
dm.readersLocks = append(dm.readersLocks, make([]string, len(restClnts)))
// and copy stack array into last spot
copy(dm.readersLocks[len(dm.readersLocks)-1], locks[:])
} else {
copy(dm.writeLocks, locks[:])
}
dm.m.Unlock()
log("lockBlocking %s/%s for %#v: granted\n", id, source, dm.Names)
return locked
}
time.Sleep(time.Duration(r.Float64() * float64(lockRetryInterval)))
}
}
}
// lock tries to acquire the distributed lock, returning true or false.
func lock(ctx context.Context, ds *Dsync, locks *[]string, id, source string, isReadLock bool, tolerance, quorum int, lockNames ...string) bool {
for i := range *locks {
(*locks)[i] = ""
}
restClnts, owner := ds.GetLockers()
// Create buffered channel of size equal to total number of nodes.
ch := make(chan Granted, len(restClnts))
var wg sync.WaitGroup
// Combined timeout for the lock attempt.
ctx, cancel := context.WithTimeout(ctx, DRWMutexAcquireTimeout)
defer cancel()
for index, c := range restClnts {
wg.Add(1)
// broadcast lock request to all nodes
go func(index int, isReadLock bool, c NetLocker) {
defer wg.Done()
g := Granted{index: index}
if c == nil {
log("dsync: nil locker\n")
ch <- g
return
}
args := LockArgs{
Owner: owner,
UID: id,
Resources: lockNames,
Source: source,
Quorum: quorum,
}
var locked bool
var err error
if isReadLock {
if locked, err = c.RLock(context.Background(), args); err != nil {
log("dsync: Unable to call RLock failed with %s for %#v at %s\n", err, args, c)
}
} else {
if locked, err = c.Lock(context.Background(), args); err != nil {
log("dsync: Unable to call Lock failed with %s for %#v at %s\n", err, args, c)
}
}
if locked {
g.lockUID = args.UID
}
ch <- g
}(index, isReadLock, c)
}
// Wait until we have either
//
// a) received all lock responses
// b) received too many 'non-'locks for quorum to be still possible
// c) timed out
//
i, locksFailed := 0, 0
done := false
for ; i < len(restClnts); i++ { // Loop until we acquired all locks
select {
case grant := <-ch:
if grant.isLocked() {
// Mark that this node has acquired the lock
(*locks)[grant.index] = grant.lockUID
} else {
locksFailed++
if locksFailed > tolerance {
// We know that we are not going to get the lock anymore,
// so exit out and release any locks that did get acquired
done = true
}
}
case <-ctx.Done():
// Capture timedout locks as failed or took too long
locksFailed++
if locksFailed > tolerance {
// We know that we are not going to get the lock anymore,
// so exit out and release any locks that did get acquired
done = true
}
}
if done {
break
}
}
quorumLocked := checkQuorumLocked(locks, quorum) && locksFailed <= tolerance
if !quorumLocked {
log("Releasing all acquired locks now abandoned after quorum was not met\n")
if !releaseAll(ds, tolerance, owner, locks, isReadLock, restClnts, lockNames...) {
log("Unable to release acquired locks, stale locks might be present\n")
}
}
// We may have some unused results in ch, release them async.
go func() {
wg.Wait()
close(ch)
for grantToBeReleased := range ch {
if grantToBeReleased.isLocked() {
// release abandoned lock
log("Releasing abandoned lock\n")
sendRelease(ds, restClnts[grantToBeReleased.index],
owner, grantToBeReleased.lockUID, isReadLock, lockNames...)
}
}
}()
return quorumLocked
}
// checkFailedUnlocks determines whether we have sufficiently unlocked all
// resources to ensure no deadlocks for future callers
func checkFailedUnlocks(locks []string, tolerance int) bool {
unlocksFailed := 0
for lockID := range locks {
if isLocked(locks[lockID]) {
unlocksFailed++
}
}
// Unlock failures are higher than tolerance limit
// for this instance of unlocker, we should let the
// caller know that lock is not successfully released
// yet.
if len(locks)-tolerance == tolerance {
// Incase of split brain scenarios where
// tolerance is exactly half of the len(*locks)
// then we need to make sure we have unlocked
// upto tolerance+1 - especially for RUnlock
// to ensure that we don't end up with active
// read locks on the resource after unlocking
// only half of the lockers.
return unlocksFailed >= tolerance
}
return unlocksFailed > tolerance
}
// checkQuorumLocked determines whether we have locked the required quorum of underlying locks or not
func checkQuorumLocked(locks *[]string, quorum int) bool {
count := 0
for _, uid := range *locks {
if isLocked(uid) {
count++
}
}
return count >= quorum
}
// releaseAll releases all locks that are marked as locked
func releaseAll(ds *Dsync, tolerance int, owner string, locks *[]string, isReadLock bool, restClnts []NetLocker, lockNames ...string) bool {
var wg sync.WaitGroup
for lockID := range restClnts {
wg.Add(1)
go func(lockID int) {
defer wg.Done()
if isLocked((*locks)[lockID]) {
if sendRelease(ds, restClnts[lockID], owner, (*locks)[lockID], isReadLock, lockNames...) {
(*locks)[lockID] = ""
}
}
}(lockID)
}
wg.Wait()
// Return true if releaseAll was successful, otherwise we return 'false'
// to indicate we haven't sufficiently unlocked lockers to avoid deadlocks.
//
// Caller may use this as an indication to call again.
return !checkFailedUnlocks(*locks, tolerance)
}
// Unlock unlocks the write lock.
//
// It is a run-time error if dm is not locked on entry to Unlock.
func (dm *DRWMutex) Unlock() {
restClnts, owner := dm.clnt.GetLockers()
// create temp array on stack
locks := make([]string, len(restClnts))
{
dm.m.Lock()
defer dm.m.Unlock()
// Check if minimally a single bool is set in the writeLocks array
lockFound := false
for _, uid := range dm.writeLocks {
if isLocked(uid) {
lockFound = true
break
}
}
if !lockFound {
panic("Trying to Unlock() while no Lock() is active")
}
// Copy write locks to stack array
copy(locks, dm.writeLocks[:])
}
// Tolerance is not set, defaults to half of the locker clients.
tolerance := len(restClnts) / 2
isReadLock := false
r := rand.New(rand.NewSource(time.Now().UnixNano()))
for !releaseAll(dm.clnt, tolerance, owner, &locks, isReadLock, restClnts, dm.Names...) {
time.Sleep(time.Duration(r.Float64() * float64(lockRetryInterval)))
}
}
// RUnlock releases a read lock held on dm.
//
// It is a run-time error if dm is not locked on entry to RUnlock.
func (dm *DRWMutex) RUnlock() {
// create temp array on stack
restClnts, owner := dm.clnt.GetLockers()
locks := make([]string, len(restClnts))
{
dm.m.Lock()
defer dm.m.Unlock()
if len(dm.readersLocks) == 0 {
panic("Trying to RUnlock() while no RLock() is active")
}
// Copy out first element to release it first (FIFO)
copy(locks, dm.readersLocks[0][:])
// Drop first element from array
dm.readersLocks = dm.readersLocks[1:]
}
// Tolerance is not set, defaults to half of the locker clients.
tolerance := len(restClnts) / 2
isReadLock := true
r := rand.New(rand.NewSource(time.Now().UnixNano()))
for !releaseAll(dm.clnt, tolerance, owner, &locks, isReadLock, restClnts, dm.Names...) {
time.Sleep(time.Duration(r.Float64() * float64(lockRetryInterval)))
}
}
// sendRelease sends a release message to a node that previously granted a lock
func sendRelease(ds *Dsync, c NetLocker, owner string, uid string, isReadLock bool, names ...string) bool {
if c == nil {
log("Unable to call RUnlock failed with %s\n", errors.New("netLocker is offline"))
return false
}
args := LockArgs{
Owner: owner,
UID: uid,
Resources: names,
}
if isReadLock {
if _, err := c.RUnlock(args); err != nil {
log("dsync: Unable to call RUnlock failed with %s for %#v at %s\n", err, args, c)
return false
}
} else {
if _, err := c.Unlock(args); err != nil {
log("dsync: Unable to call Unlock failed with %s for %#v at %s\n", err, args, c)
return false
}
}
return true
}