2016-09-29 23:42:10 -07:00

2572 lines
62 KiB
Go

// Copyright 2012-2016 Apcera Inc. All rights reserved.
// A Go client for the NATS messaging system (https://nats.io).
package nats
import (
"bufio"
"bytes"
"crypto/tls"
"crypto/x509"
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"math/rand"
"net"
"net/url"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/nats-io/nuid"
)
// Default Constants
const (
Version = "1.2.2"
DefaultURL = "nats://localhost:4222"
DefaultPort = 4222
DefaultMaxReconnect = 60
DefaultReconnectWait = 2 * time.Second
DefaultTimeout = 2 * time.Second
DefaultPingInterval = 2 * time.Minute
DefaultMaxPingOut = 2
DefaultMaxChanLen = 8192 // 8k
DefaultReconnectBufSize = 8 * 1024 * 1024 // 8MB
RequestChanLen = 8
LangString = "go"
)
// STALE_CONNECTION is for detection and proper handling of stale connections.
const STALE_CONNECTION = "stale connection"
// PERMISSIONS_ERR is for when nats server subject authorization has failed.
const PERMISSIONS_ERR = "permissions violation"
// Errors
var (
ErrConnectionClosed = errors.New("nats: connection closed")
ErrSecureConnRequired = errors.New("nats: secure connection required")
ErrSecureConnWanted = errors.New("nats: secure connection not available")
ErrBadSubscription = errors.New("nats: invalid subscription")
ErrTypeSubscription = errors.New("nats: invalid subscription type")
ErrBadSubject = errors.New("nats: invalid subject")
ErrSlowConsumer = errors.New("nats: slow consumer, messages dropped")
ErrTimeout = errors.New("nats: timeout")
ErrBadTimeout = errors.New("nats: timeout invalid")
ErrAuthorization = errors.New("nats: authorization violation")
ErrNoServers = errors.New("nats: no servers available for connection")
ErrJsonParse = errors.New("nats: connect message, json parse error")
ErrChanArg = errors.New("nats: argument needs to be a channel type")
ErrMaxPayload = errors.New("nats: maximum payload exceeded")
ErrMaxMessages = errors.New("nats: maximum messages delivered")
ErrSyncSubRequired = errors.New("nats: illegal call on an async subscription")
ErrMultipleTLSConfigs = errors.New("nats: multiple tls.Configs not allowed")
ErrNoInfoReceived = errors.New("nats: protocol exception, INFO not received")
ErrReconnectBufExceeded = errors.New("nats: outbound buffer limit exceeded")
ErrInvalidConnection = errors.New("nats: invalid connection")
ErrInvalidMsg = errors.New("nats: invalid message or message nil")
ErrInvalidArg = errors.New("nats: invalid argument")
ErrStaleConnection = errors.New("nats: " + STALE_CONNECTION)
)
var DefaultOptions = Options{
AllowReconnect: true,
MaxReconnect: DefaultMaxReconnect,
ReconnectWait: DefaultReconnectWait,
Timeout: DefaultTimeout,
PingInterval: DefaultPingInterval,
MaxPingsOut: DefaultMaxPingOut,
SubChanLen: DefaultMaxChanLen,
ReconnectBufSize: DefaultReconnectBufSize,
}
// Status represents the state of the connection.
type Status int
const (
DISCONNECTED = Status(iota)
CONNECTED
CLOSED
RECONNECTING
CONNECTING
)
// ConnHandler is used for asynchronous events such as
// disconnected and closed connections.
type ConnHandler func(*Conn)
// ErrHandler is used to process asynchronous errors encountered
// while processing inbound messages.
type ErrHandler func(*Conn, *Subscription, error)
// asyncCB is used to preserve order for async callbacks.
type asyncCB func()
// Option is a function on the options for a connection.
type Option func(*Options) error
// Options can be used to create a customized connection.
type Options struct {
Url string
Servers []string
NoRandomize bool
Name string
Verbose bool
Pedantic bool
Secure bool
TLSConfig *tls.Config
AllowReconnect bool
MaxReconnect int
ReconnectWait time.Duration
Timeout time.Duration
PingInterval time.Duration // disabled if 0 or negative
MaxPingsOut int
ClosedCB ConnHandler
DisconnectedCB ConnHandler
ReconnectedCB ConnHandler
AsyncErrorCB ErrHandler
// Size of the backing bufio buffer during reconnect. Once this
// has been exhausted publish operations will error.
ReconnectBufSize int
// The size of the buffered channel used between the socket
// Go routine and the message delivery for SyncSubscriptions.
// NOTE: This does not affect AsyncSubscriptions which are
// dictated by PendingLimits()
SubChanLen int
User string
Password string
Token string
}
const (
// Scratch storage for assembling protocol headers
scratchSize = 512
// The size of the bufio reader/writer on top of the socket.
defaultBufSize = 32768
// The buffered size of the flush "kick" channel
flushChanSize = 1024
// Default server pool size
srvPoolSize = 4
// Channel size for the async callback handler.
asyncCBChanSize = 32
)
// A Conn represents a bare connection to a nats-server.
// It can send and receive []byte payloads.
type Conn struct {
// Keep all members for which we use atomic at the beginning of the
// struct and make sure they are all 64bits (or use padding if necessary).
// atomic.* functions crash on 32bit machines if operand is not aligned
// at 64bit. See https://github.com/golang/go/issues/599
ssid int64
Statistics
mu sync.Mutex
Opts Options
wg sync.WaitGroup
url *url.URL
conn net.Conn
srvPool []*srv
urls map[string]struct{} // Keep track of all known URLs (used by processInfo)
bw *bufio.Writer
pending *bytes.Buffer
fch chan bool
info serverInfo
subs map[int64]*Subscription
mch chan *Msg
ach chan asyncCB
pongs []chan bool
scratch [scratchSize]byte
status Status
err error
ps *parseState
ptmr *time.Timer
pout int
}
// A Subscription represents interest in a given subject.
type Subscription struct {
mu sync.Mutex
sid int64
// Subject that represents this subscription. This can be different
// than the received subject inside a Msg if this is a wildcard.
Subject string
// Optional queue group name. If present, all subscriptions with the
// same name will form a distributed queue, and each message will
// only be processed by one member of the group.
Queue string
delivered uint64
max uint64
conn *Conn
mcb MsgHandler
mch chan *Msg
closed bool
sc bool
connClosed bool
// Type of Subscription
typ SubscriptionType
// Async linked list
pHead *Msg
pTail *Msg
pCond *sync.Cond
// Pending stats, async subscriptions, high-speed etc.
pMsgs int
pBytes int
pMsgsMax int
pBytesMax int
pMsgsLimit int
pBytesLimit int
dropped int
}
// Msg is a structure used by Subscribers and PublishMsg().
type Msg struct {
Subject string
Reply string
Data []byte
Sub *Subscription
next *Msg
}
// Tracks various stats received and sent on this connection,
// including counts for messages and bytes.
type Statistics struct {
InMsgs uint64
OutMsgs uint64
InBytes uint64
OutBytes uint64
Reconnects uint64
}
// Tracks individual backend servers.
type srv struct {
url *url.URL
didConnect bool
reconnects int
lastAttempt time.Time
}
type serverInfo struct {
Id string `json:"server_id"`
Host string `json:"host"`
Port uint `json:"port"`
Version string `json:"version"`
AuthRequired bool `json:"auth_required"`
TLSRequired bool `json:"tls_required"`
MaxPayload int64 `json:"max_payload"`
ConnectURLs []string `json:"connect_urls,omitempty"`
}
const (
// clientProtoZero is the original client protocol from 2009.
// http://nats.io/documentation/internals/nats-protocol/
clientProtoZero = iota
// clientProtoInfo signals a client can receive more then the original INFO block.
// This can be used to update clients on other cluster members, etc.
clientProtoInfo
)
type connectInfo struct {
Verbose bool `json:"verbose"`
Pedantic bool `json:"pedantic"`
User string `json:"user,omitempty"`
Pass string `json:"pass,omitempty"`
Token string `json:"auth_token,omitempty"`
TLS bool `json:"tls_required"`
Name string `json:"name"`
Lang string `json:"lang"`
Version string `json:"version"`
Protocol int `json:"protocol"`
}
// MsgHandler is a callback function that processes messages delivered to
// asynchronous subscribers.
type MsgHandler func(msg *Msg)
// Connect will attempt to connect to the NATS system.
// The url can contain username/password semantics. e.g. nats://derek:pass@localhost:4222
// Comma separated arrays are also supported, e.g. urlA, urlB.
// Options start with the defaults but can be overridden.
func Connect(url string, options ...Option) (*Conn, error) {
opts := DefaultOptions
opts.Servers = processUrlString(url)
for _, opt := range options {
if err := opt(&opts); err != nil {
return nil, err
}
}
return opts.Connect()
}
// Options that can be passed to Connect.
// Name is an Option to set the client name.
func Name(name string) Option {
return func(o *Options) error {
o.Name = name
return nil
}
}
// Secure is an Option to enable TLS secure connections that skip server verification by default.
// Pass a TLS Configuration for proper TLS.
func Secure(tls ...*tls.Config) Option {
return func(o *Options) error {
o.Secure = true
// Use of variadic just simplifies testing scenarios. We only take the first one.
// fixme(DLC) - Could panic if more than one. Could also do TLS option.
if len(tls) > 1 {
return ErrMultipleTLSConfigs
}
if len(tls) == 1 {
o.TLSConfig = tls[0]
}
return nil
}
}
// RootCAs is a helper option to provide the RootCAs pool from a list of filenames. If Secure is
// not already set this will set it as well.
func RootCAs(file ...string) Option {
return func(o *Options) error {
pool := x509.NewCertPool()
for _, f := range file {
rootPEM, err := ioutil.ReadFile(f)
if err != nil || rootPEM == nil {
return fmt.Errorf("nats: error loading or parsing rootCA file: %v", err)
}
ok := pool.AppendCertsFromPEM([]byte(rootPEM))
if !ok {
return fmt.Errorf("nats: failed to parse root certificate from %q", f)
}
}
if o.TLSConfig == nil {
o.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12}
}
o.TLSConfig.RootCAs = pool
o.Secure = true
return nil
}
}
// ClientCert is a helper option to provide the client certificate from a file. If Secure is
// not already set this will set it as well
func ClientCert(certFile, keyFile string) Option {
return func(o *Options) error {
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return fmt.Errorf("nats: error loading client certificate: %v", err)
}
cert.Leaf, err = x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fmt.Errorf("nats: error parsing client certificate: %v", err)
}
if o.TLSConfig == nil {
o.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12}
}
o.TLSConfig.Certificates = []tls.Certificate{cert}
o.Secure = true
return nil
}
}
// NoReconnect is an Option to turn off reconnect behavior.
func NoReconnect() Option {
return func(o *Options) error {
o.AllowReconnect = false
return nil
}
}
// DontRandomize is an Option to turn off randomizing the server pool.
func DontRandomize() Option {
return func(o *Options) error {
o.NoRandomize = true
return nil
}
}
// ReconnectWait is an Option to set the wait time between reconnect attempts.
func ReconnectWait(t time.Duration) Option {
return func(o *Options) error {
o.ReconnectWait = t
return nil
}
}
// MaxReconnects is an Option to set the maximum number of reconnect attempts.
func MaxReconnects(max int) Option {
return func(o *Options) error {
o.MaxReconnect = max
return nil
}
}
// Timeout is an Option to set the timeout for Dial on a connection.
func Timeout(t time.Duration) Option {
return func(o *Options) error {
o.Timeout = t
return nil
}
}
// DisconnectHandler is an Option to set the disconnected handler.
func DisconnectHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.DisconnectedCB = cb
return nil
}
}
// ReconnectHandler is an Option to set the reconnected handler.
func ReconnectHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.ReconnectedCB = cb
return nil
}
}
// ClosedHandler is an Option to set the closed handler.
func ClosedHandler(cb ConnHandler) Option {
return func(o *Options) error {
o.ClosedCB = cb
return nil
}
}
// ErrHandler is an Option to set the async error handler.
func ErrorHandler(cb ErrHandler) Option {
return func(o *Options) error {
o.AsyncErrorCB = cb
return nil
}
}
// UserInfo is an Option to set the username and password to
// use when not included directly in the URLs.
func UserInfo(user, password string) Option {
return func(o *Options) error {
o.User = user
o.Password = password
return nil
}
}
// Token is an Option to set the token to use when not included
// directly in the URLs.
func Token(token string) Option {
return func(o *Options) error {
o.Token = token
return nil
}
}
// Handler processing
// SetDisconnectHandler will set the disconnect event handler.
func (nc *Conn) SetDisconnectHandler(dcb ConnHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.DisconnectedCB = dcb
}
// SetReconnectHandler will set the reconnect event handler.
func (nc *Conn) SetReconnectHandler(rcb ConnHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.ReconnectedCB = rcb
}
// SetClosedHandler will set the reconnect event handler.
func (nc *Conn) SetClosedHandler(cb ConnHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.ClosedCB = cb
}
// SetErrHandler will set the async error handler.
func (nc *Conn) SetErrorHandler(cb ErrHandler) {
if nc == nil {
return
}
nc.mu.Lock()
defer nc.mu.Unlock()
nc.Opts.AsyncErrorCB = cb
}
// Process the url string argument to Connect. Return an array of
// urls, even if only one.
func processUrlString(url string) []string {
urls := strings.Split(url, ",")
for i, s := range urls {
urls[i] = strings.TrimSpace(s)
}
return urls
}
// Connect will attempt to connect to a NATS server with multiple options.
func (o Options) Connect() (*Conn, error) {
nc := &Conn{Opts: o}
// Some default options processing.
if nc.Opts.MaxPingsOut == 0 {
nc.Opts.MaxPingsOut = DefaultMaxPingOut
}
// Allow old default for channel length to work correctly.
if nc.Opts.SubChanLen == 0 {
nc.Opts.SubChanLen = DefaultMaxChanLen
}
// Default ReconnectBufSize
if nc.Opts.ReconnectBufSize == 0 {
nc.Opts.ReconnectBufSize = DefaultReconnectBufSize
}
// Ensure that Timeout is not 0
if nc.Opts.Timeout == 0 {
nc.Opts.Timeout = DefaultTimeout
}
if err := nc.setupServerPool(); err != nil {
return nil, err
}
// Create the async callback channel.
nc.ach = make(chan asyncCB, asyncCBChanSize)
if err := nc.connect(); err != nil {
return nil, err
}
// Spin up the async cb dispatcher on success
go nc.asyncDispatch()
return nc, nil
}
const (
_CRLF_ = "\r\n"
_EMPTY_ = ""
_SPC_ = " "
_PUB_P_ = "PUB "
)
const (
_OK_OP_ = "+OK"
_ERR_OP_ = "-ERR"
_MSG_OP_ = "MSG"
_PING_OP_ = "PING"
_PONG_OP_ = "PONG"
_INFO_OP_ = "INFO"
)
const (
conProto = "CONNECT %s" + _CRLF_
pingProto = "PING" + _CRLF_
pongProto = "PONG" + _CRLF_
pubProto = "PUB %s %s %d" + _CRLF_
subProto = "SUB %s %s %d" + _CRLF_
unsubProto = "UNSUB %d %s" + _CRLF_
okProto = _OK_OP_ + _CRLF_
)
// Return the currently selected server
func (nc *Conn) currentServer() (int, *srv) {
for i, s := range nc.srvPool {
if s == nil {
continue
}
if s.url == nc.url {
return i, s
}
}
return -1, nil
}
// Pop the current server and put onto the end of the list. Select head of list as long
// as number of reconnect attempts under MaxReconnect.
func (nc *Conn) selectNextServer() (*srv, error) {
i, s := nc.currentServer()
if i < 0 {
return nil, ErrNoServers
}
sp := nc.srvPool
num := len(sp)
copy(sp[i:num-1], sp[i+1:num])
maxReconnect := nc.Opts.MaxReconnect
if maxReconnect < 0 || s.reconnects < maxReconnect {
nc.srvPool[num-1] = s
} else {
nc.srvPool = sp[0 : num-1]
}
if len(nc.srvPool) <= 0 {
nc.url = nil
return nil, ErrNoServers
}
nc.url = nc.srvPool[0].url
return nc.srvPool[0], nil
}
// Will assign the correct server to the nc.Url
func (nc *Conn) pickServer() error {
nc.url = nil
if len(nc.srvPool) <= 0 {
return ErrNoServers
}
for _, s := range nc.srvPool {
if s != nil {
nc.url = s.url
return nil
}
}
return ErrNoServers
}
const tlsScheme = "tls"
// Create the server pool using the options given.
// We will place a Url option first, followed by any
// Server Options. We will randomize the server pool unlesss
// the NoRandomize flag is set.
func (nc *Conn) setupServerPool() error {
nc.srvPool = make([]*srv, 0, srvPoolSize)
nc.urls = make(map[string]struct{}, srvPoolSize)
// Create srv objects from each url string in nc.Opts.Servers
// and add them to the pool
for _, urlString := range nc.Opts.Servers {
if err := nc.addURLToPool(urlString); err != nil {
return err
}
}
// Randomize if allowed to
if !nc.Opts.NoRandomize {
nc.shufflePool()
}
// Normally, if this one is set, Options.Servers should not be,
// but we always allowed that, so continue to do so.
if nc.Opts.Url != _EMPTY_ {
// Add to the end of the array
if err := nc.addURLToPool(nc.Opts.Url); err != nil {
return err
}
// Then swap it with first to guarantee that Options.Url is tried first.
last := len(nc.srvPool) - 1
if last > 0 {
nc.srvPool[0], nc.srvPool[last] = nc.srvPool[last], nc.srvPool[0]
}
} else if len(nc.srvPool) <= 0 {
// Place default URL if pool is empty.
if err := nc.addURLToPool(DefaultURL); err != nil {
return err
}
}
// Check for Scheme hint to move to TLS mode.
for _, srv := range nc.srvPool {
if srv.url.Scheme == tlsScheme {
// FIXME(dlc), this is for all in the pool, should be case by case.
nc.Opts.Secure = true
if nc.Opts.TLSConfig == nil {
nc.Opts.TLSConfig = &tls.Config{MinVersion: tls.VersionTLS12}
}
}
}
return nc.pickServer()
}
// addURLToPool adds an entry to the server pool
func (nc *Conn) addURLToPool(sURL string) error {
u, err := url.Parse(sURL)
if err != nil {
return err
}
s := &srv{url: u}
nc.srvPool = append(nc.srvPool, s)
nc.urls[u.Host] = struct{}{}
return nil
}
// shufflePool swaps randomly elements in the server pool
func (nc *Conn) shufflePool() {
if len(nc.srvPool) <= 1 {
return
}
source := rand.NewSource(time.Now().UnixNano())
r := rand.New(source)
for i := range nc.srvPool {
j := r.Intn(i + 1)
nc.srvPool[i], nc.srvPool[j] = nc.srvPool[j], nc.srvPool[i]
}
}
// createConn will connect to the server and wrap the appropriate
// bufio structures. It will do the right thing when an existing
// connection is in place.
func (nc *Conn) createConn() (err error) {
if nc.Opts.Timeout < 0 {
return ErrBadTimeout
}
if _, cur := nc.currentServer(); cur == nil {
return ErrNoServers
} else {
cur.lastAttempt = time.Now()
}
nc.conn, err = net.DialTimeout("tcp", nc.url.Host, nc.Opts.Timeout)
if err != nil {
return err
}
// No clue why, but this stalls and kills performance on Mac (Mavericks).
// https://code.google.com/p/go/issues/detail?id=6930
//if ip, ok := nc.conn.(*net.TCPConn); ok {
// ip.SetReadBuffer(defaultBufSize)
//}
if nc.pending != nil && nc.bw != nil {
// Move to pending buffer.
nc.bw.Flush()
}
nc.bw = bufio.NewWriterSize(nc.conn, defaultBufSize)
return nil
}
// makeTLSConn will wrap an existing Conn using TLS
func (nc *Conn) makeTLSConn() {
// Allow the user to configure their own tls.Config structure, otherwise
// default to InsecureSkipVerify.
// TODO(dlc) - We should make the more secure version the default.
if nc.Opts.TLSConfig != nil {
tlsCopy := *nc.Opts.TLSConfig
// If its blank we will override it with the current host
if tlsCopy.ServerName == _EMPTY_ {
h, _, _ := net.SplitHostPort(nc.url.Host)
tlsCopy.ServerName = h
}
nc.conn = tls.Client(nc.conn, &tlsCopy)
} else {
nc.conn = tls.Client(nc.conn, &tls.Config{InsecureSkipVerify: true})
}
conn := nc.conn.(*tls.Conn)
conn.Handshake()
nc.bw = bufio.NewWriterSize(nc.conn, defaultBufSize)
}
// waitForExits will wait for all socket watcher Go routines to
// be shutdown before proceeding.
func (nc *Conn) waitForExits() {
// Kick old flusher forcefully.
select {
case nc.fch <- true:
default:
}
// Wait for any previous go routines.
nc.wg.Wait()
}
// spinUpGoRoutines will launch the Go routines responsible for
// reading and writing to the socket. This will be launched via a
// go routine itself to release any locks that may be held.
// We also use a WaitGroup to make sure we only start them on a
// reconnect when the previous ones have exited.
func (nc *Conn) spinUpGoRoutines() {
// Make sure everything has exited.
nc.waitForExits()
// We will wait on both.
nc.wg.Add(2)
// Spin up the readLoop and the socket flusher.
go nc.readLoop()
go nc.flusher()
nc.mu.Lock()
if nc.Opts.PingInterval > 0 {
if nc.ptmr == nil {
nc.ptmr = time.AfterFunc(nc.Opts.PingInterval, nc.processPingTimer)
} else {
nc.ptmr.Reset(nc.Opts.PingInterval)
}
}
nc.mu.Unlock()
}
// Report the connected server's Url
func (nc *Conn) ConnectedUrl() string {
if nc == nil {
return _EMPTY_
}
nc.mu.Lock()
defer nc.mu.Unlock()
if nc.status != CONNECTED {
return _EMPTY_
}
return nc.url.String()
}
// Report the connected server's Id
func (nc *Conn) ConnectedServerId() string {
if nc == nil {
return _EMPTY_
}
nc.mu.Lock()
defer nc.mu.Unlock()
if nc.status != CONNECTED {
return _EMPTY_
}
return nc.info.Id
}
// Low level setup for structs, etc
func (nc *Conn) setup() {
nc.subs = make(map[int64]*Subscription)
nc.pongs = make([]chan bool, 0, 8)
nc.fch = make(chan bool, flushChanSize)
// Setup scratch outbound buffer for PUB
pub := nc.scratch[:len(_PUB_P_)]
copy(pub, _PUB_P_)
}
// Process a connected connection and initialize properly.
func (nc *Conn) processConnectInit() error {
// Set out deadline for the whole connect process
nc.conn.SetDeadline(time.Now().Add(nc.Opts.Timeout))
defer nc.conn.SetDeadline(time.Time{})
// Set our status to connecting.
nc.status = CONNECTING
// Process the INFO protocol received from the server
err := nc.processExpectedInfo()
if err != nil {
return err
}
// Send the CONNECT protocol along with the initial PING protocol.
// Wait for the PONG response (or any error that we get from the server).
err = nc.sendConnect()
if err != nil {
return err
}
// Reset the number of PING sent out
nc.pout = 0
go nc.spinUpGoRoutines()
return nil
}
// Main connect function. Will connect to the nats-server
func (nc *Conn) connect() error {
var returnedErr error
// Create actual socket connection
// For first connect we walk all servers in the pool and try
// to connect immediately.
nc.mu.Lock()
// The pool may change inside theloop iteration due to INFO protocol.
for i := 0; i < len(nc.srvPool); i++ {
nc.url = nc.srvPool[i].url
if err := nc.createConn(); err == nil {
// This was moved out of processConnectInit() because
// that function is now invoked from doReconnect() too.
nc.setup()
err = nc.processConnectInit()
if err == nil {
nc.srvPool[i].didConnect = true
nc.srvPool[i].reconnects = 0
returnedErr = nil
break
} else {
returnedErr = err
nc.mu.Unlock()
nc.close(DISCONNECTED, false)
nc.mu.Lock()
nc.url = nil
}
} else {
// Cancel out default connection refused, will trigger the
// No servers error conditional
if matched, _ := regexp.Match(`connection refused`, []byte(err.Error())); matched {
returnedErr = nil
}
}
}
defer nc.mu.Unlock()
if returnedErr == nil && nc.status != CONNECTED {
returnedErr = ErrNoServers
}
return returnedErr
}
// This will check to see if the connection should be
// secure. This can be dictated from either end and should
// only be called after the INIT protocol has been received.
func (nc *Conn) checkForSecure() error {
// Check to see if we need to engage TLS
o := nc.Opts
// Check for mismatch in setups
if o.Secure && !nc.info.TLSRequired {
return ErrSecureConnWanted
} else if nc.info.TLSRequired && !o.Secure {
return ErrSecureConnRequired
}
// Need to rewrap with bufio
if o.Secure {
nc.makeTLSConn()
}
return nil
}
// processExpectedInfo will look for the expected first INFO message
// sent when a connection is established. The lock should be held entering.
func (nc *Conn) processExpectedInfo() error {
c := &control{}
// Read the protocol
err := nc.readOp(c)
if err != nil {
return err
}
// The nats protocol should send INFO first always.
if c.op != _INFO_OP_ {
return ErrNoInfoReceived
}
// Parse the protocol
if err := nc.processInfo(c.args); err != nil {
return err
}
err = nc.checkForSecure()
if err != nil {
return err
}
return nil
}
// Sends a protocol control message by queuing into the bufio writer
// and kicking the flush Go routine. These writes are protected.
func (nc *Conn) sendProto(proto string) {
nc.mu.Lock()
nc.bw.WriteString(proto)
nc.kickFlusher()
nc.mu.Unlock()
}
// Generate a connect protocol message, issuing user/password if
// applicable. The lock is assumed to be held upon entering.
func (nc *Conn) connectProto() (string, error) {
o := nc.Opts
var user, pass, token string
u := nc.url.User
if u != nil {
// if no password, assume username is authToken
if _, ok := u.Password(); !ok {
token = u.Username()
} else {
user = u.Username()
pass, _ = u.Password()
}
} else {
// Take from options (pssibly all empty strings)
user = nc.Opts.User
pass = nc.Opts.Password
token = nc.Opts.Token
}
cinfo := connectInfo{o.Verbose, o.Pedantic,
user, pass, token,
o.Secure, o.Name, LangString, Version, clientProtoInfo}
b, err := json.Marshal(cinfo)
if err != nil {
return _EMPTY_, ErrJsonParse
}
return fmt.Sprintf(conProto, b), nil
}
// normalizeErr removes the prefix -ERR, trim spaces and remove the quotes.
func normalizeErr(line string) string {
s := strings.ToLower(strings.TrimSpace(strings.TrimPrefix(line, _ERR_OP_)))
s = strings.TrimLeft(strings.TrimRight(s, "'"), "'")
return s
}
// Send a connect protocol message to the server, issue user/password if
// applicable. Will wait for a flush to return from the server for error
// processing.
func (nc *Conn) sendConnect() error {
// Construct the CONNECT protocol string
cProto, err := nc.connectProto()
if err != nil {
return err
}
// Write the protocol into the buffer
_, err = nc.bw.WriteString(cProto)
if err != nil {
return err
}
// Add to the buffer the PING protocol
_, err = nc.bw.WriteString(pingProto)
if err != nil {
return err
}
// Flush the buffer
err = nc.bw.Flush()
if err != nil {
return err
}
// Now read the response from the server.
br := bufio.NewReaderSize(nc.conn, defaultBufSize)
line, err := br.ReadString('\n')
if err != nil {
return err
}
// If opts.Verbose is set, handle +OK
if nc.Opts.Verbose && line == okProto {
// Read the rest now...
line, err = br.ReadString('\n')
if err != nil {
return err
}
}
// We expect a PONG
if line != pongProto {
// But it could be something else, like -ERR
// Since we no longer use ReadLine(), trim the trailing "\r\n"
line = strings.TrimRight(line, "\r\n")
// If it's a server error...
if strings.HasPrefix(line, _ERR_OP_) {
// Remove -ERR, trim spaces and quotes, and convert to lower case.
line = normalizeErr(line)
return errors.New("nats: " + line)
}
// Notify that we got an unexpected protocol.
return errors.New(fmt.Sprintf("nats: expected '%s', got '%s'", _PONG_OP_, line))
}
// This is where we are truly connected.
nc.status = CONNECTED
return nil
}
// A control protocol line.
type control struct {
op, args string
}
// Read a control line and process the intended op.
func (nc *Conn) readOp(c *control) error {
br := bufio.NewReaderSize(nc.conn, defaultBufSize)
line, err := br.ReadString('\n')
if err != nil {
return err
}
parseControl(line, c)
return nil
}
// Parse a control line from the server.
func parseControl(line string, c *control) {
toks := strings.SplitN(line, _SPC_, 2)
if len(toks) == 1 {
c.op = strings.TrimSpace(toks[0])
c.args = _EMPTY_
} else if len(toks) == 2 {
c.op, c.args = strings.TrimSpace(toks[0]), strings.TrimSpace(toks[1])
} else {
c.op = _EMPTY_
}
}
// flushReconnectPending will push the pending items that were
// gathered while we were in a RECONNECTING state to the socket.
func (nc *Conn) flushReconnectPendingItems() {
if nc.pending == nil {
return
}
if nc.pending.Len() > 0 {
nc.bw.Write(nc.pending.Bytes())
}
}
// Try to reconnect using the option parameters.
// This function assumes we are allowed to reconnect.
func (nc *Conn) doReconnect() {
// We want to make sure we have the other watchers shutdown properly
// here before we proceed past this point.
nc.waitForExits()
// FIXME(dlc) - We have an issue here if we have
// outstanding flush points (pongs) and they were not
// sent out, but are still in the pipe.
// Hold the lock manually and release where needed below,
// can't do defer here.
nc.mu.Lock()
// Clear any queued pongs, e.g. pending flush calls.
nc.clearPendingFlushCalls()
// Clear any errors.
nc.err = nil
// Perform appropriate callback if needed for a disconnect.
if nc.Opts.DisconnectedCB != nil {
nc.ach <- func() { nc.Opts.DisconnectedCB(nc) }
}
for len(nc.srvPool) > 0 {
cur, err := nc.selectNextServer()
if err != nil {
nc.err = err
break
}
sleepTime := int64(0)
// Sleep appropriate amount of time before the
// connection attempt if connecting to same server
// we just got disconnected from..
if time.Since(cur.lastAttempt) < nc.Opts.ReconnectWait {
sleepTime = int64(nc.Opts.ReconnectWait - time.Since(cur.lastAttempt))
}
// On Windows, createConn() will take more than a second when no
// server is running at that address. So it could be that the
// time elapsed between reconnect attempts is always > than
// the set option. Release the lock to give a chance to a parallel
// nc.Close() to break the loop.
nc.mu.Unlock()
if sleepTime <= 0 {
runtime.Gosched()
} else {
time.Sleep(time.Duration(sleepTime))
}
nc.mu.Lock()
// Check if we have been closed first.
if nc.isClosed() {
break
}
// Mark that we tried a reconnect
cur.reconnects++
// Try to create a new connection
err = nc.createConn()
// Not yet connected, retry...
// Continue to hold the lock
if err != nil {
nc.err = nil
continue
}
// We are reconnected
nc.Reconnects++
// Process connect logic
if nc.err = nc.processConnectInit(); nc.err != nil {
nc.status = RECONNECTING
continue
}
// Clear out server stats for the server we connected to..
cur.didConnect = true
cur.reconnects = 0
// Send existing subscription state
nc.resendSubscriptions()
// Now send off and clear pending buffer
nc.flushReconnectPendingItems()
// Flush the buffer
nc.err = nc.bw.Flush()
if nc.err != nil {
nc.status = RECONNECTING
continue
}
// Done with the pending buffer
nc.pending = nil
// This is where we are truly connected.
nc.status = CONNECTED
// Queue up the reconnect callback.
if nc.Opts.ReconnectedCB != nil {
nc.ach <- func() { nc.Opts.ReconnectedCB(nc) }
}
// Release lock here, we will return below.
nc.mu.Unlock()
// Make sure to flush everything
nc.Flush()
return
}
// Call into close.. We have no servers left..
if nc.err == nil {
nc.err = ErrNoServers
}
nc.mu.Unlock()
nc.Close()
}
// processOpErr handles errors from reading or parsing the protocol.
// The lock should not be held entering this function.
func (nc *Conn) processOpErr(err error) {
nc.mu.Lock()
if nc.isConnecting() || nc.isClosed() || nc.isReconnecting() {
nc.mu.Unlock()
return
}
if nc.Opts.AllowReconnect && nc.status == CONNECTED {
// Set our new status
nc.status = RECONNECTING
if nc.ptmr != nil {
nc.ptmr.Stop()
}
if nc.conn != nil {
nc.bw.Flush()
nc.conn.Close()
nc.conn = nil
}
// Create a new pending buffer to underpin the bufio Writer while
// we are reconnecting.
nc.pending = &bytes.Buffer{}
nc.bw = bufio.NewWriterSize(nc.pending, nc.Opts.ReconnectBufSize)
go nc.doReconnect()
nc.mu.Unlock()
return
}
nc.status = DISCONNECTED
nc.err = err
nc.mu.Unlock()
nc.Close()
}
// Marker to close the channel to kick out the Go routine.
func (nc *Conn) closeAsyncFunc() asyncCB {
return func() {
nc.mu.Lock()
if nc.ach != nil {
close(nc.ach)
nc.ach = nil
}
nc.mu.Unlock()
}
}
// asyncDispatch is responsible for calling any async callbacks
func (nc *Conn) asyncDispatch() {
// snapshot since they can change from underneath of us.
nc.mu.Lock()
ach := nc.ach
nc.mu.Unlock()
// Loop on the channel and process async callbacks.
for {
if f, ok := <-ach; !ok {
return
} else {
f()
}
}
}
// readLoop() will sit on the socket reading and processing the
// protocol from the server. It will dispatch appropriately based
// on the op type.
func (nc *Conn) readLoop() {
// Release the wait group on exit
defer nc.wg.Done()
// Create a parseState if needed.
nc.mu.Lock()
if nc.ps == nil {
nc.ps = &parseState{}
}
nc.mu.Unlock()
// Stack based buffer.
b := make([]byte, defaultBufSize)
for {
// FIXME(dlc): RWLock here?
nc.mu.Lock()
sb := nc.isClosed() || nc.isReconnecting()
if sb {
nc.ps = &parseState{}
}
conn := nc.conn
nc.mu.Unlock()
if sb || conn == nil {
break
}
n, err := conn.Read(b)
if err != nil {
nc.processOpErr(err)
break
}
if err := nc.parse(b[:n]); err != nil {
nc.processOpErr(err)
break
}
}
// Clear the parseState here..
nc.mu.Lock()
nc.ps = nil
nc.mu.Unlock()
}
// waitForMsgs waits on the conditional shared with readLoop and processMsg.
// It is used to deliver messages to asynchronous subscribers.
func (nc *Conn) waitForMsgs(s *Subscription) {
var closed bool
var delivered, max uint64
for {
s.mu.Lock()
if s.pHead == nil && !s.closed {
s.pCond.Wait()
}
// Pop the msg off the list
m := s.pHead
if m != nil {
s.pHead = m.next
if s.pHead == nil {
s.pTail = nil
}
s.pMsgs--
s.pBytes -= len(m.Data)
}
mcb := s.mcb
max = s.max
closed = s.closed
if !s.closed {
s.delivered++
delivered = s.delivered
}
s.mu.Unlock()
if closed {
break
}
// Deliver the message.
if m != nil && (max <= 0 || delivered <= max) {
mcb(m)
}
// If we have hit the max for delivered msgs, remove sub.
if max > 0 && delivered >= max {
nc.mu.Lock()
nc.removeSub(s)
nc.mu.Unlock()
break
}
}
}
// processMsg is called by parse and will place the msg on the
// appropriate channel/pending queue for processing. If the channel is full,
// or the pending queue is over the pending limits, the connection is
// considered a slow consumer.
func (nc *Conn) processMsg(data []byte) {
// Lock from here on out.
nc.mu.Lock()
// Stats
nc.InMsgs++
nc.InBytes += uint64(len(data))
sub := nc.subs[nc.ps.ma.sid]
if sub == nil {
nc.mu.Unlock()
return
}
// Copy them into string
subj := string(nc.ps.ma.subject)
reply := string(nc.ps.ma.reply)
// Doing message create outside of the sub's lock to reduce contention.
// It's possible that we end-up not using the message, but that's ok.
// FIXME(dlc): Need to copy, should/can do COW?
msgPayload := make([]byte, len(data))
copy(msgPayload, data)
// FIXME(dlc): Should we recycle these containers?
m := &Msg{Data: msgPayload, Subject: subj, Reply: reply, Sub: sub}
sub.mu.Lock()
// Subscription internal stats (applicable only for non ChanSubscription's)
if sub.typ != ChanSubscription {
sub.pMsgs++
if sub.pMsgs > sub.pMsgsMax {
sub.pMsgsMax = sub.pMsgs
}
sub.pBytes += len(m.Data)
if sub.pBytes > sub.pBytesMax {
sub.pBytesMax = sub.pBytes
}
// Check for a Slow Consumer
if (sub.pMsgsLimit > 0 && sub.pMsgs > sub.pMsgsLimit) ||
(sub.pBytesLimit > 0 && sub.pBytes > sub.pBytesLimit) {
goto slowConsumer
}
}
// We have two modes of delivery. One is the channel, used by channel
// subscribers and syncSubscribers, the other is a linked list for async.
if sub.mch != nil {
select {
case sub.mch <- m:
default:
goto slowConsumer
}
} else {
// Push onto the async pList
if sub.pHead == nil {
sub.pHead = m
sub.pTail = m
sub.pCond.Signal()
} else {
sub.pTail.next = m
sub.pTail = m
}
}
// Clear SlowConsumer status.
sub.sc = false
sub.mu.Unlock()
nc.mu.Unlock()
return
slowConsumer:
sub.dropped++
nc.processSlowConsumer(sub)
// Undo stats from above
if sub.typ != ChanSubscription {
sub.pMsgs--
sub.pBytes -= len(m.Data)
}
sub.mu.Unlock()
nc.mu.Unlock()
return
}
// processSlowConsumer will set SlowConsumer state and fire the
// async error handler if registered.
func (nc *Conn) processSlowConsumer(s *Subscription) {
nc.err = ErrSlowConsumer
if nc.Opts.AsyncErrorCB != nil && !s.sc {
nc.ach <- func() { nc.Opts.AsyncErrorCB(nc, s, ErrSlowConsumer) }
}
s.sc = true
}
// processPermissionsViolation is called when the server signals a subject
// permissions violation on either publish or subscribe.
func (nc *Conn) processPermissionsViolation(err string) {
nc.err = errors.New("nats: " + err)
if nc.Opts.AsyncErrorCB != nil {
nc.ach <- func() { nc.Opts.AsyncErrorCB(nc, nil, nc.err) }
}
}
// flusher is a separate Go routine that will process flush requests for the write
// bufio. This allows coalescing of writes to the underlying socket.
func (nc *Conn) flusher() {
// Release the wait group
defer nc.wg.Done()
// snapshot the bw and conn since they can change from underneath of us.
nc.mu.Lock()
bw := nc.bw
conn := nc.conn
fch := nc.fch
nc.mu.Unlock()
if conn == nil || bw == nil {
return
}
for {
if _, ok := <-fch; !ok {
return
}
nc.mu.Lock()
// Check to see if we should bail out.
if !nc.isConnected() || nc.isConnecting() || bw != nc.bw || conn != nc.conn {
nc.mu.Unlock()
return
}
if bw.Buffered() > 0 {
if err := bw.Flush(); err != nil {
if nc.err == nil {
nc.err = err
}
}
}
nc.mu.Unlock()
}
}
// processPing will send an immediate pong protocol response to the
// server. The server uses this mechanism to detect dead clients.
func (nc *Conn) processPing() {
nc.sendProto(pongProto)
}
// processPong is used to process responses to the client's ping
// messages. We use pings for the flush mechanism as well.
func (nc *Conn) processPong() {
var ch chan bool
nc.mu.Lock()
if len(nc.pongs) > 0 {
ch = nc.pongs[0]
nc.pongs = nc.pongs[1:]
}
nc.pout = 0
nc.mu.Unlock()
if ch != nil {
ch <- true
}
}
// processOK is a placeholder for processing OK messages.
func (nc *Conn) processOK() {
// do nothing
}
// processInfo is used to parse the info messages sent
// from the server.
// This function May update the server pool.
func (nc *Conn) processInfo(info string) error {
if info == _EMPTY_ {
return nil
}
if err := json.Unmarshal([]byte(info), &nc.info); err != nil {
return err
}
updated := false
urls := nc.info.ConnectURLs
for _, curl := range urls {
if _, present := nc.urls[curl]; !present {
if err := nc.addURLToPool(fmt.Sprintf("nats://%s", curl)); err != nil {
continue
}
updated = true
}
}
if updated && !nc.Opts.NoRandomize {
nc.shufflePool()
}
return nil
}
// processAsyncInfo does the same than processInfo, but is called
// from the parser. Calls processInfo under connection's lock
// protection.
func (nc *Conn) processAsyncInfo(info []byte) {
nc.mu.Lock()
// Ignore errors, we will simply not update the server pool...
nc.processInfo(string(info))
nc.mu.Unlock()
}
// LastError reports the last error encountered via the connection.
// It can be used reliably within ClosedCB in order to find out reason
// why connection was closed for example.
func (nc *Conn) LastError() error {
if nc == nil {
return ErrInvalidConnection
}
nc.mu.Lock()
err := nc.err
nc.mu.Unlock()
return err
}
// processErr processes any error messages from the server and
// sets the connection's lastError.
func (nc *Conn) processErr(e string) {
// Trim, remove quotes, convert to lower case.
e = normalizeErr(e)
// FIXME(dlc) - process Slow Consumer signals special.
if e == STALE_CONNECTION {
nc.processOpErr(ErrStaleConnection)
} else if strings.HasPrefix(e, PERMISSIONS_ERR) {
nc.processPermissionsViolation(e)
} else {
nc.mu.Lock()
nc.err = errors.New("nats: " + e)
nc.mu.Unlock()
nc.Close()
}
}
// kickFlusher will send a bool on a channel to kick the
// flush Go routine to flush data to the server.
func (nc *Conn) kickFlusher() {
if nc.bw != nil {
select {
case nc.fch <- true:
default:
}
}
}
// Publish publishes the data argument to the given subject. The data
// argument is left untouched and needs to be correctly interpreted on
// the receiver.
func (nc *Conn) Publish(subj string, data []byte) error {
return nc.publish(subj, _EMPTY_, data)
}
// PublishMsg publishes the Msg structure, which includes the
// Subject, an optional Reply and an optional Data field.
func (nc *Conn) PublishMsg(m *Msg) error {
if m == nil {
return ErrInvalidMsg
}
return nc.publish(m.Subject, m.Reply, m.Data)
}
// PublishRequest will perform a Publish() excpecting a response on the
// reply subject. Use Request() for automatically waiting for a response
// inline.
func (nc *Conn) PublishRequest(subj, reply string, data []byte) error {
return nc.publish(subj, reply, data)
}
// Used for handrolled itoa
const digits = "0123456789"
// publish is the internal function to publish messages to a nats-server.
// Sends a protocol data message by queuing into the bufio writer
// and kicking the flush go routine. These writes should be protected.
func (nc *Conn) publish(subj, reply string, data []byte) error {
if nc == nil {
return ErrInvalidConnection
}
if subj == "" {
return ErrBadSubject
}
nc.mu.Lock()
// Proactively reject payloads over the threshold set by server.
var msgSize int64
msgSize = int64(len(data))
if msgSize > nc.info.MaxPayload {
nc.mu.Unlock()
return ErrMaxPayload
}
if nc.isClosed() {
nc.mu.Unlock()
return ErrConnectionClosed
}
// Check if we are reconnecting, and if so check if
// we have exceeded our reconnect outbound buffer limits.
if nc.isReconnecting() {
// Flush to underlying buffer.
nc.bw.Flush()
// Check if we are over
if nc.pending.Len() >= nc.Opts.ReconnectBufSize {
nc.mu.Unlock()
return ErrReconnectBufExceeded
}
}
msgh := nc.scratch[:len(_PUB_P_)]
msgh = append(msgh, subj...)
msgh = append(msgh, ' ')
if reply != "" {
msgh = append(msgh, reply...)
msgh = append(msgh, ' ')
}
// We could be smarter here, but simple loop is ok,
// just avoid strconv in fast path
// FIXME(dlc) - Find a better way here.
// msgh = strconv.AppendInt(msgh, int64(len(data)), 10)
var b [12]byte
var i = len(b)
if len(data) > 0 {
for l := len(data); l > 0; l /= 10 {
i -= 1
b[i] = digits[l%10]
}
} else {
i -= 1
b[i] = digits[0]
}
msgh = append(msgh, b[i:]...)
msgh = append(msgh, _CRLF_...)
// FIXME, do deadlines here
_, err := nc.bw.Write(msgh)
if err == nil {
_, err = nc.bw.Write(data)
}
if err == nil {
_, err = nc.bw.WriteString(_CRLF_)
}
if err != nil {
nc.mu.Unlock()
return err
}
nc.OutMsgs++
nc.OutBytes += uint64(len(data))
if len(nc.fch) == 0 {
nc.kickFlusher()
}
nc.mu.Unlock()
return nil
}
// Request will create an Inbox and perform a Request() call
// with the Inbox reply and return the first reply received.
// This is optimized for the case of multiple responses.
func (nc *Conn) Request(subj string, data []byte, timeout time.Duration) (*Msg, error) {
inbox := NewInbox()
ch := make(chan *Msg, RequestChanLen)
s, err := nc.subscribe(inbox, _EMPTY_, nil, ch)
if err != nil {
return nil, err
}
s.AutoUnsubscribe(1)
defer s.Unsubscribe()
err = nc.PublishRequest(subj, inbox, data)
if err != nil {
return nil, err
}
return s.NextMsg(timeout)
}
// InboxPrefix is the prefix for all inbox subjects.
const InboxPrefix = "_INBOX."
const inboxPrefixLen = len(InboxPrefix)
// NewInbox will return an inbox string which can be used for directed replies from
// subscribers. These are guaranteed to be unique, but can be shared and subscribed
// to by others.
func NewInbox() string {
var b [inboxPrefixLen + 22]byte
pres := b[:inboxPrefixLen]
copy(pres, InboxPrefix)
ns := b[inboxPrefixLen:]
copy(ns, nuid.Next())
return string(b[:])
}
// Subscribe will express interest in the given subject. The subject
// can have wildcards (partial:*, full:>). Messages will be delivered
// to the associated MsgHandler. If no MsgHandler is given, the
// subscription is a synchronous subscription and can be polled via
// Subscription.NextMsg().
func (nc *Conn) Subscribe(subj string, cb MsgHandler) (*Subscription, error) {
return nc.subscribe(subj, _EMPTY_, cb, nil)
}
// ChanSubscribe will place all messages received on the channel.
// You should not close the channel until sub.Unsubscribe() has been called.
func (nc *Conn) ChanSubscribe(subj string, ch chan *Msg) (*Subscription, error) {
return nc.subscribe(subj, _EMPTY_, nil, ch)
}
// ChanQueueSubscribe will place all messages received on the channel.
// You should not close the channel until sub.Unsubscribe() has been called.
func (nc *Conn) ChanQueueSubscribe(subj, group string, ch chan *Msg) (*Subscription, error) {
return nc.subscribe(subj, group, nil, ch)
}
// SubscribeSync is syntactic sugar for Subscribe(subject, nil).
func (nc *Conn) SubscribeSync(subj string) (*Subscription, error) {
if nc == nil {
return nil, ErrInvalidConnection
}
mch := make(chan *Msg, nc.Opts.SubChanLen)
s, e := nc.subscribe(subj, _EMPTY_, nil, mch)
if s != nil {
s.typ = SyncSubscription
}
return s, e
}
// QueueSubscribe creates an asynchronous queue subscriber on the given subject.
// All subscribers with the same queue name will form the queue group and
// only one member of the group will be selected to receive any given
// message asynchronously.
func (nc *Conn) QueueSubscribe(subj, queue string, cb MsgHandler) (*Subscription, error) {
return nc.subscribe(subj, queue, cb, nil)
}
// QueueSubscribeSync creates a synchronous queue subscriber on the given
// subject. All subscribers with the same queue name will form the queue
// group and only one member of the group will be selected to receive any
// given message synchronously.
func (nc *Conn) QueueSubscribeSync(subj, queue string) (*Subscription, error) {
mch := make(chan *Msg, nc.Opts.SubChanLen)
s, e := nc.subscribe(subj, queue, nil, mch)
if s != nil {
s.typ = SyncSubscription
}
return s, e
}
// QueueSubscribeSyncWithChan is syntactic sugar for ChanQueueSubscribe(subject, group, ch).
func (nc *Conn) QueueSubscribeSyncWithChan(subj, queue string, ch chan *Msg) (*Subscription, error) {
return nc.subscribe(subj, queue, nil, ch)
}
// subscribe is the internal subscribe function that indicates interest in a subject.
func (nc *Conn) subscribe(subj, queue string, cb MsgHandler, ch chan *Msg) (*Subscription, error) {
if nc == nil {
return nil, ErrInvalidConnection
}
nc.mu.Lock()
// ok here, but defer is generally expensive
defer nc.mu.Unlock()
defer nc.kickFlusher()
// Check for some error conditions.
if nc.isClosed() {
return nil, ErrConnectionClosed
}
if cb == nil && ch == nil {
return nil, ErrBadSubscription
}
sub := &Subscription{Subject: subj, Queue: queue, mcb: cb, conn: nc}
// Set pending limits.
sub.pMsgsLimit = DefaultSubPendingMsgsLimit
sub.pBytesLimit = DefaultSubPendingBytesLimit
// If we have an async callback, start up a sub specific
// Go routine to deliver the messages.
if cb != nil {
sub.typ = AsyncSubscription
sub.pCond = sync.NewCond(&sub.mu)
go nc.waitForMsgs(sub)
} else {
sub.typ = ChanSubscription
sub.mch = ch
}
sub.sid = atomic.AddInt64(&nc.ssid, 1)
nc.subs[sub.sid] = sub
// We will send these for all subs when we reconnect
// so that we can suppress here.
if !nc.isReconnecting() {
nc.bw.WriteString(fmt.Sprintf(subProto, subj, queue, sub.sid))
}
return sub, nil
}
// Lock for nc should be held here upon entry
func (nc *Conn) removeSub(s *Subscription) {
delete(nc.subs, s.sid)
s.mu.Lock()
defer s.mu.Unlock()
// Release callers on NextMsg for SyncSubscription only
if s.mch != nil && s.typ == SyncSubscription {
close(s.mch)
}
s.mch = nil
// Mark as invalid
s.conn = nil
s.closed = true
if s.pCond != nil {
s.pCond.Broadcast()
}
}
// SubscriptionType is the type of the Subscription.
type SubscriptionType int
// The different types of subscription types.
const (
AsyncSubscription = SubscriptionType(iota)
SyncSubscription
ChanSubscription
NilSubscription
)
// Type returns the type of Subscription.
func (s *Subscription) Type() SubscriptionType {
if s == nil {
return NilSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
return s.typ
}
// IsValid returns a boolean indicating whether the subscription
// is still active. This will return false if the subscription has
// already been closed.
func (s *Subscription) IsValid() bool {
if s == nil {
return false
}
s.mu.Lock()
defer s.mu.Unlock()
return s.conn != nil
}
// Unsubscribe will remove interest in the given subject.
func (s *Subscription) Unsubscribe() error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
conn := s.conn
s.mu.Unlock()
if conn == nil {
return ErrBadSubscription
}
return conn.unsubscribe(s, 0)
}
// AutoUnsubscribe will issue an automatic Unsubscribe that is
// processed by the server when max messages have been received.
// This can be useful when sending a request to an unknown number
// of subscribers. Request() uses this functionality.
func (s *Subscription) AutoUnsubscribe(max int) error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
conn := s.conn
s.mu.Unlock()
if conn == nil {
return ErrBadSubscription
}
return conn.unsubscribe(s, max)
}
// unsubscribe performs the low level unsubscribe to the server.
// Use Subscription.Unsubscribe()
func (nc *Conn) unsubscribe(sub *Subscription, max int) error {
nc.mu.Lock()
// ok here, but defer is expensive
defer nc.mu.Unlock()
defer nc.kickFlusher()
if nc.isClosed() {
return ErrConnectionClosed
}
s := nc.subs[sub.sid]
// Already unsubscribed
if s == nil {
return nil
}
maxStr := _EMPTY_
if max > 0 {
s.max = uint64(max)
maxStr = strconv.Itoa(max)
} else {
nc.removeSub(s)
}
// We will send these for all subs when we reconnect
// so that we can suppress here.
if !nc.isReconnecting() {
nc.bw.WriteString(fmt.Sprintf(unsubProto, s.sid, maxStr))
}
return nil
}
// NextMsg() will return the next message available to a synchronous subscriber
// or block until one is available. A timeout can be used to return when no
// message has been delivered.
func (s *Subscription) NextMsg(timeout time.Duration) (*Msg, error) {
if s == nil {
return nil, ErrBadSubscription
}
s.mu.Lock()
if s.connClosed {
s.mu.Unlock()
return nil, ErrConnectionClosed
}
if s.mch == nil {
if s.max > 0 && s.delivered >= s.max {
s.mu.Unlock()
return nil, ErrMaxMessages
} else if s.closed {
s.mu.Unlock()
return nil, ErrBadSubscription
}
}
if s.mcb != nil {
s.mu.Unlock()
return nil, ErrSyncSubRequired
}
if s.sc {
s.sc = false
s.mu.Unlock()
return nil, ErrSlowConsumer
}
// snapshot
nc := s.conn
mch := s.mch
max := s.max
s.mu.Unlock()
var ok bool
var msg *Msg
t := time.NewTimer(timeout)
defer t.Stop()
select {
case msg, ok = <-mch:
if !ok {
return nil, ErrConnectionClosed
}
// Update some stats.
s.mu.Lock()
s.delivered++
delivered := s.delivered
if s.typ == SyncSubscription {
s.pMsgs--
s.pBytes -= len(msg.Data)
}
s.mu.Unlock()
if max > 0 {
if delivered > max {
return nil, ErrMaxMessages
}
// Remove subscription if we have reached max.
if delivered == max {
nc.mu.Lock()
nc.removeSub(s)
nc.mu.Unlock()
}
}
case <-t.C:
return nil, ErrTimeout
}
return msg, nil
}
// Queued returns the number of queued messages in the client for this subscription.
// DEPRECATED: Use Pending()
func (s *Subscription) QueuedMsgs() (int, error) {
m, _, err := s.Pending()
return int(m), err
}
// Pending returns the number of queued messages and queued bytes in the client for this subscription.
func (s *Subscription) Pending() (int, int, error) {
if s == nil {
return -1, -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil {
return -1, -1, ErrBadSubscription
}
if s.typ == ChanSubscription {
return -1, -1, ErrTypeSubscription
}
return s.pMsgs, s.pBytes, nil
}
// MaxPending returns the maximum number of queued messages and queued bytes seen so far.
func (s *Subscription) MaxPending() (int, int, error) {
if s == nil {
return -1, -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil {
return -1, -1, ErrBadSubscription
}
if s.typ == ChanSubscription {
return -1, -1, ErrTypeSubscription
}
return s.pMsgsMax, s.pBytesMax, nil
}
// ClearMaxPending resets the maximums seen so far.
func (s *Subscription) ClearMaxPending() error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil {
return ErrBadSubscription
}
if s.typ == ChanSubscription {
return ErrTypeSubscription
}
s.pMsgsMax, s.pBytesMax = 0, 0
return nil
}
// Pending Limits
const (
DefaultSubPendingMsgsLimit = 65536
DefaultSubPendingBytesLimit = 65536 * 1024
)
// PendingLimits returns the current limits for this subscription.
// If no error is returned, a negative value indicates that the
// given metric is not limited.
func (s *Subscription) PendingLimits() (int, int, error) {
if s == nil {
return -1, -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil {
return -1, -1, ErrBadSubscription
}
if s.typ == ChanSubscription {
return -1, -1, ErrTypeSubscription
}
return s.pMsgsLimit, s.pBytesLimit, nil
}
// SetPendingLimits sets the limits for pending msgs and bytes for this subscription.
// Zero is not allowed. Any negative value means that the given metric is not limited.
func (s *Subscription) SetPendingLimits(msgLimit, bytesLimit int) error {
if s == nil {
return ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil {
return ErrBadSubscription
}
if s.typ == ChanSubscription {
return ErrTypeSubscription
}
if msgLimit == 0 || bytesLimit == 0 {
return ErrInvalidArg
}
s.pMsgsLimit, s.pBytesLimit = msgLimit, bytesLimit
return nil
}
// Delivered returns the number of delivered messages for this subscription.
func (s *Subscription) Delivered() (int64, error) {
if s == nil {
return -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil {
return -1, ErrBadSubscription
}
return int64(s.delivered), nil
}
// Dropped returns the number of known dropped messages for this subscription.
// This will correspond to messages dropped by violations of PendingLimits. If
// the server declares the connection a SlowConsumer, this number may not be
// valid.
func (s *Subscription) Dropped() (int, error) {
if s == nil {
return -1, ErrBadSubscription
}
s.mu.Lock()
defer s.mu.Unlock()
if s.conn == nil {
return -1, ErrBadSubscription
}
return s.dropped, nil
}
// FIXME: This is a hack
// removeFlushEntry is needed when we need to discard queued up responses
// for our pings as part of a flush call. This happens when we have a flush
// call outstanding and we call close.
func (nc *Conn) removeFlushEntry(ch chan bool) bool {
nc.mu.Lock()
defer nc.mu.Unlock()
if nc.pongs == nil {
return false
}
for i, c := range nc.pongs {
if c == ch {
nc.pongs[i] = nil
return true
}
}
return false
}
// The lock must be held entering this function.
func (nc *Conn) sendPing(ch chan bool) {
nc.pongs = append(nc.pongs, ch)
nc.bw.WriteString(pingProto)
// Flush in place.
nc.bw.Flush()
}
// This will fire periodically and send a client origin
// ping to the server. Will also check that we have received
// responses from the server.
func (nc *Conn) processPingTimer() {
nc.mu.Lock()
if nc.status != CONNECTED {
nc.mu.Unlock()
return
}
// Check for violation
nc.pout++
if nc.pout > nc.Opts.MaxPingsOut {
nc.mu.Unlock()
nc.processOpErr(ErrStaleConnection)
return
}
nc.sendPing(nil)
nc.ptmr.Reset(nc.Opts.PingInterval)
nc.mu.Unlock()
}
// FlushTimeout allows a Flush operation to have an associated timeout.
func (nc *Conn) FlushTimeout(timeout time.Duration) (err error) {
if nc == nil {
return ErrInvalidConnection
}
if timeout <= 0 {
return ErrBadTimeout
}
nc.mu.Lock()
if nc.isClosed() {
nc.mu.Unlock()
return ErrConnectionClosed
}
t := time.NewTimer(timeout)
defer t.Stop()
ch := make(chan bool) // FIXME: Inefficient?
nc.sendPing(ch)
nc.mu.Unlock()
select {
case _, ok := <-ch:
if !ok {
err = ErrConnectionClosed
} else {
close(ch)
}
case <-t.C:
err = ErrTimeout
}
if err != nil {
nc.removeFlushEntry(ch)
}
return
}
// Flush will perform a round trip to the server and return when it
// receives the internal reply.
func (nc *Conn) Flush() error {
return nc.FlushTimeout(60 * time.Second)
}
// Buffered will return the number of bytes buffered to be sent to the server.
// FIXME(dlc) take into account disconnected state.
func (nc *Conn) Buffered() (int, error) {
nc.mu.Lock()
defer nc.mu.Unlock()
if nc.isClosed() || nc.bw == nil {
return -1, ErrConnectionClosed
}
return nc.bw.Buffered(), nil
}
// resendSubscriptions will send our subscription state back to the
// server. Used in reconnects
func (nc *Conn) resendSubscriptions() {
for _, s := range nc.subs {
adjustedMax := uint64(0)
s.mu.Lock()
if s.max > 0 {
if s.delivered < s.max {
adjustedMax = s.max - s.delivered
}
// adjustedMax could be 0 here if the number of delivered msgs
// reached the max, if so unsubscribe.
if adjustedMax == 0 {
s.mu.Unlock()
nc.bw.WriteString(fmt.Sprintf(unsubProto, s.sid, _EMPTY_))
continue
}
}
s.mu.Unlock()
nc.bw.WriteString(fmt.Sprintf(subProto, s.Subject, s.Queue, s.sid))
if adjustedMax > 0 {
maxStr := strconv.Itoa(int(adjustedMax))
nc.bw.WriteString(fmt.Sprintf(unsubProto, s.sid, maxStr))
}
}
}
// This will clear any pending flush calls and release pending calls.
// Lock is assumed to be held by the caller.
func (nc *Conn) clearPendingFlushCalls() {
// Clear any queued pongs, e.g. pending flush calls.
for _, ch := range nc.pongs {
if ch != nil {
close(ch)
}
}
nc.pongs = nil
}
// Low level close call that will do correct cleanup and set
// desired status. Also controls whether user defined callbacks
// will be triggered. The lock should not be held entering this
// function. This function will handle the locking manually.
func (nc *Conn) close(status Status, doCBs bool) {
nc.mu.Lock()
if nc.isClosed() {
nc.status = status
nc.mu.Unlock()
return
}
nc.status = CLOSED
// Kick the Go routines so they fall out.
nc.kickFlusher()
nc.mu.Unlock()
nc.mu.Lock()
// Clear any queued pongs, e.g. pending flush calls.
nc.clearPendingFlushCalls()
if nc.ptmr != nil {
nc.ptmr.Stop()
}
// Go ahead and make sure we have flushed the outbound
if nc.conn != nil {
nc.bw.Flush()
defer nc.conn.Close()
}
// Close sync subscriber channels and release any
// pending NextMsg() calls.
for _, s := range nc.subs {
s.mu.Lock()
// Release callers on NextMsg for SyncSubscription only
if s.mch != nil && s.typ == SyncSubscription {
close(s.mch)
}
s.mch = nil
// Mark as invalid, for signalling to deliverMsgs
s.closed = true
// Mark connection closed in subscription
s.connClosed = true
// If we have an async subscription, signals it to exit
if s.typ == AsyncSubscription && s.pCond != nil {
s.pCond.Signal()
}
s.mu.Unlock()
}
nc.subs = nil
// Perform appropriate callback if needed for a disconnect.
if doCBs {
if nc.Opts.DisconnectedCB != nil && nc.conn != nil {
nc.ach <- func() { nc.Opts.DisconnectedCB(nc) }
}
if nc.Opts.ClosedCB != nil {
nc.ach <- func() { nc.Opts.ClosedCB(nc) }
}
nc.ach <- nc.closeAsyncFunc()
}
nc.status = status
nc.mu.Unlock()
}
// Close will close the connection to the server. This call will release
// all blocking calls, such as Flush() and NextMsg()
func (nc *Conn) Close() {
nc.close(CLOSED, true)
}
// IsClosed tests if a Conn has been closed.
func (nc *Conn) IsClosed() bool {
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.isClosed()
}
// IsReconnecting tests if a Conn is reconnecting.
func (nc *Conn) IsReconnecting() bool {
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.isReconnecting()
}
// IsConnected tests if a Conn is connected.
func (nc *Conn) IsConnected() bool {
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.isConnected()
}
// Status returns the current state of the connection.
func (nc *Conn) Status() Status {
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.status
}
// Test if Conn has been closed Lock is assumed held.
func (nc *Conn) isClosed() bool {
return nc.status == CLOSED
}
// Test if Conn is in the process of connecting
func (nc *Conn) isConnecting() bool {
return nc.status == CONNECTING
}
// Test if Conn is being reconnected.
func (nc *Conn) isReconnecting() bool {
return nc.status == RECONNECTING
}
// Test if Conn is connected or connecting.
func (nc *Conn) isConnected() bool {
return nc.status == CONNECTED
}
// Stats will return a race safe copy of the Statistics section for the connection.
func (nc *Conn) Stats() Statistics {
nc.mu.Lock()
defer nc.mu.Unlock()
stats := nc.Statistics
return stats
}
// MaxPayload returns the size limit that a message payload can have.
// This is set by the server configuration and delivered to the client
// upon connect.
func (nc *Conn) MaxPayload() int64 {
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.info.MaxPayload
}
// AuthRequired will return if the connected server requires authorization.
func (nc *Conn) AuthRequired() bool {
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.info.AuthRequired
}
// TLSRequired will return if the connected server requires TLS connections.
func (nc *Conn) TLSRequired() bool {
nc.mu.Lock()
defer nc.mu.Unlock()
return nc.info.TLSRequired
}