minio/cmd/data-scanner.go

1458 lines
45 KiB
Go

// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package cmd
import (
"bytes"
"context"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io/fs"
"math"
"math/rand"
"os"
"path"
"strings"
"sync"
"time"
"github.com/bits-and-blooms/bloom/v3"
"github.com/dustin/go-humanize"
"github.com/minio/madmin-go"
"github.com/minio/minio/internal/bucket/lifecycle"
"github.com/minio/minio/internal/bucket/object/lock"
"github.com/minio/minio/internal/bucket/replication"
"github.com/minio/minio/internal/color"
"github.com/minio/minio/internal/config/heal"
"github.com/minio/minio/internal/event"
"github.com/minio/minio/internal/logger"
"github.com/minio/pkg/console"
uatomic "go.uber.org/atomic"
)
const (
dataScannerSleepPerFolder = time.Millisecond // Time to wait between folders.
dataUsageUpdateDirCycles = 16 // Visit all folders every n cycles.
dataScannerCompactLeastObject = 500 // Compact when there is less than this many objects in a branch.
dataScannerCompactAtChildren = 10000 // Compact when there are this many children in a branch.
dataScannerCompactAtFolders = dataScannerCompactAtChildren / 4 // Compact when this many subfolders in a single folder.
dataScannerForceCompactAtFolders = 1_000_000 // Compact when this many subfolders in a single folder (even top level).
dataScannerStartDelay = 1 * time.Minute // Time to wait on startup and between cycles.
healDeleteDangling = true
healFolderIncludeProb = 32 // Include a clean folder one in n cycles.
healObjectSelectProb = 512 // Overall probability of a file being scanned; one in n.
)
var (
globalHealConfig heal.Config
dataScannerLeaderLockTimeout = newDynamicTimeoutWithOpts(dynamicTimeoutOpts{
timeout: 30 * time.Second,
minimum: 10 * time.Second,
retryInterval: time.Second,
})
// Sleeper values are updated when config is loaded.
scannerSleeper = newDynamicSleeper(10, 10*time.Second, true)
scannerCycle = uatomic.NewDuration(dataScannerStartDelay)
)
// initDataScanner will start the scanner in the background.
func initDataScanner(ctx context.Context, objAPI ObjectLayer) {
go func() {
r := rand.New(rand.NewSource(time.Now().UnixNano()))
// Run the data scanner in a loop
for {
runDataScanner(ctx, objAPI)
duration := time.Duration(r.Float64() * float64(scannerCycle.Load()))
if duration < time.Second {
// Make sure to sleep atleast a second to avoid high CPU ticks.
duration = time.Second
}
time.Sleep(duration)
}
}()
}
func getCycleScanMode(currentCycle, bitrotStartCycle uint64, bitrotStartTime time.Time) madmin.HealScanMode {
bitrotCycle := globalHealConfig.BitrotScanCycle()
switch bitrotCycle {
case -1:
return madmin.HealNormalScan
case 0:
return madmin.HealDeepScan
}
if currentCycle-bitrotStartCycle < healObjectSelectProb {
return madmin.HealDeepScan
}
if time.Since(bitrotStartTime) > bitrotCycle {
return madmin.HealDeepScan
}
return madmin.HealNormalScan
}
type backgroundHealInfo struct {
BitrotStartTime time.Time `json:"bitrotStartTime"`
BitrotStartCycle uint64 `json:"bitrotStartCycle"`
CurrentScanMode madmin.HealScanMode `json:"currentScanMode"`
}
func readBackgroundHealInfo(ctx context.Context, objAPI ObjectLayer) backgroundHealInfo {
if globalIsErasureSD {
return backgroundHealInfo{}
}
// Get last healing information
buf, err := readConfig(ctx, objAPI, backgroundHealInfoPath)
if err != nil {
if !errors.Is(err, errConfigNotFound) {
logger.LogIf(ctx, err)
}
return backgroundHealInfo{}
}
var info backgroundHealInfo
if err = json.Unmarshal(buf, &info); err != nil {
logger.LogIf(ctx, err)
}
return info
}
func saveBackgroundHealInfo(ctx context.Context, objAPI ObjectLayer, info backgroundHealInfo) {
if globalIsErasureSD {
return
}
b, err := json.Marshal(info)
if err != nil {
logger.LogIf(ctx, err)
return
}
// Get last healing information
err = saveConfig(ctx, objAPI, backgroundHealInfoPath, b)
if err != nil {
logger.LogIf(ctx, err)
}
}
// runDataScanner will start a data scanner.
// The function will block until the context is canceled.
// There should only ever be one scanner running per cluster.
func runDataScanner(pctx context.Context, objAPI ObjectLayer) {
// Make sure only 1 scanner is running on the cluster.
locker := objAPI.NewNSLock(minioMetaBucket, "scanner/runDataScanner.lock")
lkctx, err := locker.GetLock(pctx, dataScannerLeaderLockTimeout)
if err != nil {
if intDataUpdateTracker.debug {
logger.LogIf(pctx, err)
}
return
}
ctx := lkctx.Context()
defer lkctx.Cancel()
// No unlock for "leader" lock.
// Load current bloom cycle
var cycleInfo currentScannerCycle
cycleInfo.next = intDataUpdateTracker.current() + 1
buf, _ := readConfig(ctx, objAPI, dataUsageBloomNamePath)
if len(buf) == 8 {
cycleInfo.next = binary.LittleEndian.Uint64(buf)
} else if len(buf) > 8 {
cycleInfo.next = binary.LittleEndian.Uint64(buf[:8])
buf = buf[8:]
_, err = cycleInfo.UnmarshalMsg(buf)
logger.LogIf(ctx, err)
}
scannerTimer := time.NewTimer(scannerCycle.Load())
defer scannerTimer.Stop()
defer globalScannerMetrics.setCycle(nil)
for {
select {
case <-ctx.Done():
return
case <-scannerTimer.C:
// Reset the timer for next cycle.
// If scanner takes longer we start at once.
scannerTimer.Reset(scannerCycle.Load())
stopFn := globalScannerMetrics.log(scannerMetricScanCycle)
cycleInfo.current = cycleInfo.next
cycleInfo.started = time.Now()
globalScannerMetrics.setCycle(&cycleInfo)
bgHealInfo := readBackgroundHealInfo(ctx, objAPI)
scanMode := getCycleScanMode(cycleInfo.current, bgHealInfo.BitrotStartCycle, bgHealInfo.BitrotStartTime)
if bgHealInfo.CurrentScanMode != scanMode {
newHealInfo := bgHealInfo
newHealInfo.CurrentScanMode = scanMode
if scanMode == madmin.HealDeepScan {
newHealInfo.BitrotStartTime = time.Now().UTC()
newHealInfo.BitrotStartCycle = cycleInfo.current
}
saveBackgroundHealInfo(ctx, objAPI, newHealInfo)
}
// Wait before starting next cycle and wait on startup.
results := make(chan DataUsageInfo, 1)
go storeDataUsageInBackend(ctx, objAPI, results)
bf, err := globalNotificationSys.updateBloomFilter(ctx, cycleInfo.current)
logger.LogIf(ctx, err)
err = objAPI.NSScanner(ctx, bf, results, uint32(cycleInfo.current), scanMode)
logger.LogIf(ctx, err)
stopFn()
if err == nil {
// Store new cycle...
cycleInfo.next++
cycleInfo.current = 0
cycleInfo.cycleCompleted = append(cycleInfo.cycleCompleted, time.Now())
if len(cycleInfo.cycleCompleted) > dataUsageUpdateDirCycles {
cycleInfo.cycleCompleted = cycleInfo.cycleCompleted[len(cycleInfo.cycleCompleted)-dataUsageUpdateDirCycles:]
}
globalScannerMetrics.setCycle(&cycleInfo)
tmp := make([]byte, 8, 8+cycleInfo.Msgsize())
// Cycle for backward compat.
binary.LittleEndian.PutUint64(tmp, cycleInfo.next)
tmp, _ = cycleInfo.MarshalMsg(tmp)
err = saveConfig(ctx, objAPI, dataUsageBloomNamePath, tmp)
logger.LogIf(ctx, err)
}
}
}
}
type cachedFolder struct {
name string
parent *dataUsageHash
objectHealProbDiv uint32
}
type folderScanner struct {
root string
getSize getSizeFn
oldCache dataUsageCache
newCache dataUsageCache
updateCache dataUsageCache
withFilter *bloomFilter
dataUsageScannerDebug bool
healFolderInclude uint32 // Include a clean folder one in n cycles.
healObjectSelect uint32 // Do a heal check on an object once every n cycles. Must divide into healFolderInclude
scanMode madmin.HealScanMode
disks []StorageAPI
disksQuorum int
// If set updates will be sent regularly to this channel.
// Will not be closed when returned.
updates chan<- dataUsageEntry
lastUpdate time.Time
// updateCurrentPath should be called whenever a new path is scanned.
updateCurrentPath func(string)
}
// Cache structure and compaction:
//
// A cache structure will be kept with a tree of usages.
// The cache is a tree structure where each keeps track of its children.
//
// An uncompacted branch contains a count of the files only directly at the
// branch level, and contains link to children branches or leaves.
//
// The leaves are "compacted" based on a number of properties.
// A compacted leaf contains the totals of all files beneath it.
//
// A leaf is only scanned once every dataUsageUpdateDirCycles,
// rarer if the bloom filter for the path is clean and no lifecycles are applied.
// Skipped leaves have their totals transferred from the previous cycle.
//
// A clean leaf will be included once every healFolderIncludeProb for partial heal scans.
// When selected there is a one in healObjectSelectProb that any object will be chosen for heal scan.
//
// Compaction happens when either:
//
// 1) The folder (and subfolders) contains less than dataScannerCompactLeastObject objects.
// 2) The folder itself contains more than dataScannerCompactAtFolders folders.
// 3) The folder only contains objects and no subfolders.
//
// A bucket root will never be compacted.
//
// Furthermore if a has more than dataScannerCompactAtChildren recursive children (uncompacted folders)
// the tree will be recursively scanned and the branches with the least number of objects will be
// compacted until the limit is reached.
//
// This ensures that any branch will never contain an unreasonable amount of other branches,
// and also that small branches with few objects don't take up unreasonable amounts of space.
// This keeps the cache size at a reasonable size for all buckets.
//
// Whenever a branch is scanned, it is assumed that it will be un-compacted
// before it hits any of the above limits.
// This will make the branch rebalance itself when scanned if the distribution of objects has changed.
// scanDataFolder will scanner the basepath+cache.Info.Name and return an updated cache.
// The returned cache will always be valid, but may not be updated from the existing.
// Before each operation sleepDuration is called which can be used to temporarily halt the scanner.
// If the supplied context is canceled the function will return at the first chance.
func scanDataFolder(ctx context.Context, poolIdx, setIdx int, basePath string, cache dataUsageCache, getSize getSizeFn, scanMode madmin.HealScanMode) (dataUsageCache, error) {
logPrefix := color.Green("data-usage: ")
switch cache.Info.Name {
case "", dataUsageRoot:
return cache, errors.New("internal error: root scan attempted")
}
updatePath, closeDisk := globalScannerMetrics.currentPathUpdater(basePath, cache.Info.Name)
defer closeDisk()
s := folderScanner{
root: basePath,
getSize: getSize,
oldCache: cache,
newCache: dataUsageCache{Info: cache.Info},
updateCache: dataUsageCache{Info: cache.Info},
dataUsageScannerDebug: intDataUpdateTracker.debug,
healFolderInclude: 0,
healObjectSelect: 0,
scanMode: scanMode,
updates: cache.Info.updates,
updateCurrentPath: updatePath,
}
// Add disks for set healing.
if poolIdx >= 0 && setIdx >= 0 {
objAPI, ok := newObjectLayerFn().(*erasureServerPools)
if ok {
if poolIdx < len(objAPI.serverPools) && setIdx < len(objAPI.serverPools[poolIdx].sets) {
// Pass the disks belonging to the set.
s.disks = objAPI.serverPools[poolIdx].sets[setIdx].getDisks()
s.disksQuorum = len(s.disks) / 2
} else {
logger.LogIf(ctx, fmt.Errorf("Matching pool %s, set %s not found", humanize.Ordinal(poolIdx+1), humanize.Ordinal(setIdx+1)))
}
}
}
// Enable healing in XL mode.
if globalIsErasure && !cache.Info.SkipHealing {
// Include a clean folder one in n cycles.
s.healFolderInclude = healFolderIncludeProb
// Do a heal check on an object once every n cycles. Must divide into healFolderInclude
s.healObjectSelect = healObjectSelectProb
}
if len(cache.Info.BloomFilter) > 0 {
s.withFilter = &bloomFilter{BloomFilter: &bloom.BloomFilter{}}
_, err := s.withFilter.ReadFrom(bytes.NewReader(cache.Info.BloomFilter))
if err != nil {
logger.LogIf(ctx, err, logPrefix+"Error reading bloom filter")
s.withFilter = nil
}
}
done := ctx.Done()
// Read top level in bucket.
select {
case <-done:
return cache, ctx.Err()
default:
}
root := dataUsageEntry{}
folder := cachedFolder{name: cache.Info.Name, objectHealProbDiv: 1}
err := s.scanFolder(ctx, folder, &root)
if err != nil {
// No useful information...
return cache, err
}
s.newCache.Info.LastUpdate = UTCNow()
s.newCache.Info.NextCycle = cache.Info.NextCycle
return s.newCache, nil
}
// sendUpdate() should be called on a regular basis when the newCache contains more recent total than previously.
// May or may not send an update upstream.
func (f *folderScanner) sendUpdate() {
// Send at most an update every minute.
if f.updates == nil || time.Since(f.lastUpdate) < time.Minute {
return
}
if flat := f.updateCache.sizeRecursive(f.newCache.Info.Name); flat != nil {
select {
case f.updates <- *flat:
default:
}
f.lastUpdate = time.Now()
}
}
// scanFolder will scan the provided folder.
// Files found in the folders will be added to f.newCache.
// If final is provided folders will be put into f.newFolders or f.existingFolders.
// If final is not provided the folders found are returned from the function.
func (f *folderScanner) scanFolder(ctx context.Context, folder cachedFolder, into *dataUsageEntry) error {
done := ctx.Done()
scannerLogPrefix := color.Green("folder-scanner:")
thisHash := hashPath(folder.name)
// Store initial compaction state.
wasCompacted := into.Compacted
for {
select {
case <-done:
return ctx.Err()
default:
}
existing, ok := f.oldCache.Cache[thisHash.Key()]
var abandonedChildren dataUsageHashMap
if !into.Compacted {
abandonedChildren = f.oldCache.findChildrenCopy(thisHash)
}
// If there are lifecycle rules for the prefix, remove the filter.
filter := f.withFilter
_, prefix := path2BucketObjectWithBasePath(f.root, folder.name)
var activeLifeCycle *lifecycle.Lifecycle
if f.oldCache.Info.lifeCycle != nil && f.oldCache.Info.lifeCycle.HasActiveRules(prefix, true) {
if f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" Prefix %q has active rules\n", prefix)
}
activeLifeCycle = f.oldCache.Info.lifeCycle
filter = nil
}
// If there are replication rules for the prefix, remove the filter.
var replicationCfg replicationConfig
if !f.oldCache.Info.replication.Empty() && f.oldCache.Info.replication.Config.HasActiveRules(prefix, true) {
replicationCfg = f.oldCache.Info.replication
filter = nil
}
// Check if we can skip it due to bloom filter...
if filter != nil && ok && existing.Compacted {
// If folder isn't in filter and we have data, skip it completely.
if folder.name != dataUsageRoot && !filter.containsDir(folder.name) {
if f.healObjectSelect == 0 || !thisHash.modAlt(f.oldCache.Info.NextCycle/folder.objectHealProbDiv, f.healFolderInclude/folder.objectHealProbDiv) {
f.newCache.copyWithChildren(&f.oldCache, thisHash, folder.parent)
f.updateCache.copyWithChildren(&f.oldCache, thisHash, folder.parent)
if f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" Skipping non-updated folder: %v\n", folder.name)
}
return nil
}
if f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" Adding non-updated folder to heal check: %v\n", folder.name)
}
// If probability was already scannerHealFolderInclude, keep it.
folder.objectHealProbDiv = f.healFolderInclude
}
}
scannerSleeper.Sleep(ctx, dataScannerSleepPerFolder)
var existingFolders, newFolders []cachedFolder
var foundObjects bool
err := readDirFn(path.Join(f.root, folder.name), func(entName string, typ os.FileMode) error {
// Parse
entName = pathClean(path.Join(folder.name, entName))
if entName == "" || entName == folder.name {
if f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" no entity (%s,%s)\n", f.root, entName)
}
return nil
}
bucket, prefix := path2BucketObjectWithBasePath(f.root, entName)
if bucket == "" {
if f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" no bucket (%s,%s)\n", f.root, entName)
}
return errDoneForNow
}
if isReservedOrInvalidBucket(bucket, false) {
if f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" invalid bucket: %v, entry: %v\n", bucket, entName)
}
return errDoneForNow
}
select {
case <-done:
return errDoneForNow
default:
}
if typ&os.ModeDir != 0 {
h := hashPath(entName)
_, exists := f.oldCache.Cache[h.Key()]
if h == thisHash {
return nil
}
this := cachedFolder{name: entName, parent: &thisHash, objectHealProbDiv: folder.objectHealProbDiv}
delete(abandonedChildren, h.Key()) // h.Key() already accounted for.
if exists {
existingFolders = append(existingFolders, this)
f.updateCache.copyWithChildren(&f.oldCache, h, &thisHash)
} else {
newFolders = append(newFolders, this)
}
return nil
}
// Dynamic time delay.
wait := scannerSleeper.Timer(ctx)
// Get file size, ignore errors.
item := scannerItem{
Path: path.Join(f.root, entName),
Typ: typ,
bucket: bucket,
prefix: path.Dir(prefix),
objectName: path.Base(entName),
debug: f.dataUsageScannerDebug,
lifeCycle: activeLifeCycle,
replication: replicationCfg,
}
item.heal.enabled = thisHash.modAlt(f.oldCache.Info.NextCycle/folder.objectHealProbDiv, f.healObjectSelect/folder.objectHealProbDiv) && globalIsErasure
item.heal.bitrot = f.scanMode == madmin.HealDeepScan
// if the drive belongs to an erasure set
// that is already being healed, skip the
// healing attempt on this drive.
item.heal.enabled = item.heal.enabled && f.healObjectSelect > 0
sz, err := f.getSize(item)
if err != nil {
wait() // wait to proceed to next entry.
if err != errSkipFile && f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" getSize \"%v/%v\" returned err: %v\n", bucket, item.objectPath(), err)
}
return nil
}
// successfully read means we have a valid object.
foundObjects = true
// Remove filename i.e is the meta file to construct object name
item.transformMetaDir()
// Object already accounted for, remove from heal map,
// simply because getSize() function already heals the
// object.
delete(abandonedChildren, path.Join(item.bucket, item.objectPath()))
into.addSizes(sz)
into.Objects++
wait() // wait to proceed to next entry.
return nil
})
if err != nil {
return err
}
if foundObjects && globalIsErasure {
// If we found an object in erasure mode, we skip subdirs (only datadirs)...
break
}
// If we have many subfolders, compact ourself.
shouldCompact := f.newCache.Info.Name != folder.name &&
len(existingFolders)+len(newFolders) >= dataScannerCompactAtFolders ||
len(existingFolders)+len(newFolders) >= dataScannerForceCompactAtFolders
if !into.Compacted && shouldCompact {
into.Compacted = true
newFolders = append(newFolders, existingFolders...)
existingFolders = nil
if f.dataUsageScannerDebug {
console.Debugf(scannerLogPrefix+" Preemptively compacting: %v, entries: %v\n", folder.name, len(existingFolders)+len(newFolders))
}
}
scanFolder := func(folder cachedFolder) {
if contextCanceled(ctx) {
return
}
dst := into
if !into.Compacted {
dst = &dataUsageEntry{Compacted: false}
}
if err := f.scanFolder(ctx, folder, dst); err != nil {
logger.LogIf(ctx, err)
return
}
if !into.Compacted {
h := dataUsageHash(folder.name)
into.addChild(h)
// We scanned a folder, optionally send update.
f.updateCache.deleteRecursive(h)
f.updateCache.copyWithChildren(&f.newCache, h, folder.parent)
f.sendUpdate()
}
}
// Transfer existing
if !into.Compacted {
for _, folder := range existingFolders {
h := hashPath(folder.name)
f.updateCache.copyWithChildren(&f.oldCache, h, folder.parent)
}
}
// Scan new...
for _, folder := range newFolders {
h := hashPath(folder.name)
// Add new folders to the update tree so totals update for these.
if !into.Compacted {
var foundAny bool
parent := thisHash
for parent != hashPath(f.updateCache.Info.Name) {
e := f.updateCache.find(parent.Key())
if e == nil || e.Compacted {
foundAny = true
break
}
if next := f.updateCache.searchParent(parent); next == nil {
foundAny = true
break
} else {
parent = *next
}
}
if !foundAny {
// Add non-compacted empty entry.
f.updateCache.replaceHashed(h, &thisHash, dataUsageEntry{})
}
}
f.updateCurrentPath(folder.name)
stopFn := globalScannerMetrics.log(scannerMetricScanFolder, f.root, folder.name)
scanFolder(folder)
stopFn()
// Add new folders if this is new and we don't have existing.
if !into.Compacted {
parent := f.updateCache.find(thisHash.Key())
if parent != nil && !parent.Compacted {
f.updateCache.deleteRecursive(h)
f.updateCache.copyWithChildren(&f.newCache, h, &thisHash)
}
}
}
// Scan existing...
for _, folder := range existingFolders {
h := hashPath(folder.name)
// Check if we should skip scanning folder...
// We can only skip if we are not indexing into a compacted destination
// and the entry itself is compacted.
if !into.Compacted && f.oldCache.isCompacted(h) {
if !h.mod(f.oldCache.Info.NextCycle, dataUsageUpdateDirCycles) {
if f.healObjectSelect == 0 || !h.modAlt(f.oldCache.Info.NextCycle/folder.objectHealProbDiv, f.healFolderInclude/folder.objectHealProbDiv) {
// Transfer and add as child...
f.newCache.copyWithChildren(&f.oldCache, h, folder.parent)
into.addChild(h)
continue
}
folder.objectHealProbDiv = f.healFolderInclude
}
}
f.updateCurrentPath(folder.name)
stopFn := globalScannerMetrics.log(scannerMetricScanFolder, f.root, folder.name, "EXISTING")
scanFolder(folder)
stopFn()
}
// Scan for healing
if f.healObjectSelect == 0 || len(abandonedChildren) == 0 {
// If we are not heal scanning, return now.
break
}
objAPI, ok := newObjectLayerFn().(*erasureServerPools)
if !ok || len(f.disks) == 0 || f.disksQuorum == 0 {
break
}
bgSeq, found := globalBackgroundHealState.getHealSequenceByToken(bgHealingUUID)
if !found {
break
}
// Whatever remains in 'abandonedChildren' are folders at this level
// that existed in the previous run but wasn't found now.
//
// This may be because of 2 reasons:
//
// 1) The folder/object was deleted.
// 2) We come from another disk and this disk missed the write.
//
// We therefore perform a heal check.
// If that doesn't bring it back we remove the folder and assume it was deleted.
// This means that the next run will not look for it.
// How to resolve results.
resolver := metadataResolutionParams{
dirQuorum: f.disksQuorum,
objQuorum: f.disksQuorum,
bucket: "",
strict: false,
}
healObjectsPrefix := color.Green("healObjects:")
for k := range abandonedChildren {
bucket, prefix := path2BucketObject(k)
stopFn := globalScannerMetrics.time(scannerMetricCheckMissing)
f.updateCurrentPath(k)
if bucket != resolver.bucket {
// Bucket might be missing as well with abandoned children.
// make sure it is created first otherwise healing won't proceed
// for objects.
_, _ = objAPI.HealBucket(ctx, bucket, madmin.HealOpts{})
}
resolver.bucket = bucket
foundObjs := false
ctx, cancel := context.WithCancel(ctx)
err := listPathRaw(ctx, listPathRawOptions{
disks: f.disks,
bucket: bucket,
path: prefix,
recursive: true,
reportNotFound: true,
minDisks: f.disksQuorum,
agreed: func(entry metaCacheEntry) {
if f.dataUsageScannerDebug {
console.Debugf(healObjectsPrefix+" got agreement: %v\n", entry.name)
}
},
// Some disks have data for this.
partial: func(entries metaCacheEntries, errs []error) {
entry, ok := entries.resolve(&resolver)
if !ok {
// check if we can get one entry atleast
// proceed to heal nonetheless, since
// this object might be dangling.
entry, _ = entries.firstFound()
}
if f.dataUsageScannerDebug {
console.Debugf(healObjectsPrefix+" resolved to: %v, dir: %v\n", entry.name, entry.isDir())
}
if entry.isDir() {
return
}
// wait on timer per object.
wait := scannerSleeper.Timer(ctx)
// We got an entry which we should be able to heal.
fiv, err := entry.fileInfoVersions(bucket)
if err != nil {
wait()
err := bgSeq.queueHealTask(healSource{
bucket: bucket,
object: entry.name,
versionID: "",
}, madmin.HealItemObject)
logger.LogIf(ctx, err)
foundObjs = foundObjs || err == nil
return
}
for _, ver := range fiv.Versions {
// Sleep and reset.
wait()
wait = scannerSleeper.Timer(ctx)
err := bgSeq.queueHealTask(healSource{
bucket: bucket,
object: fiv.Name,
versionID: ver.VersionID,
}, madmin.HealItemObject)
logger.LogIf(ctx, err)
foundObjs = foundObjs || err == nil
}
},
// Too many disks failed.
finished: func(errs []error) {
if f.dataUsageScannerDebug {
console.Debugf(healObjectsPrefix+" too many errors: %v\n", errs)
}
cancel()
},
})
stopFn()
if f.dataUsageScannerDebug && err != nil && err != errFileNotFound {
console.Debugf(healObjectsPrefix+" checking returned value %v (%T)\n", err, err)
}
// Add unless healing returned an error.
if foundObjs {
this := cachedFolder{name: k, parent: &thisHash, objectHealProbDiv: 1}
stopFn := globalScannerMetrics.log(scannerMetricScanFolder, f.root, this.name, "HEALED")
scanFolder(this)
stopFn()
}
}
break
}
if !wasCompacted {
f.newCache.replaceHashed(thisHash, folder.parent, *into)
}
if !into.Compacted && f.newCache.Info.Name != folder.name {
flat := f.newCache.sizeRecursive(thisHash.Key())
flat.Compacted = true
var compact bool
if flat.Objects < dataScannerCompactLeastObject {
if f.dataUsageScannerDebug && flat.Objects > 1 {
// Disabled, rather chatty:
// console.Debugf(scannerLogPrefix+" Only %d objects, compacting %s -> %+v\n", flat.Objects, folder.name, flat)
}
compact = true
} else {
// Compact if we only have objects as children...
compact = true
for k := range into.Children {
if v, ok := f.newCache.Cache[k]; ok {
if len(v.Children) > 0 || v.Objects > 1 {
compact = false
break
}
}
}
if f.dataUsageScannerDebug && compact {
// Disabled, rather chatty:
// console.Debugf(scannerLogPrefix+" Only objects (%d), compacting %s -> %+v\n", flat.Objects, folder.name, flat)
}
}
if compact {
f.newCache.deleteRecursive(thisHash)
f.newCache.replaceHashed(thisHash, folder.parent, *flat)
}
}
// Compact if too many children...
if !into.Compacted {
f.newCache.reduceChildrenOf(thisHash, dataScannerCompactAtChildren, f.newCache.Info.Name != folder.name)
}
if _, ok := f.updateCache.Cache[thisHash.Key()]; !wasCompacted && ok {
// Replace if existed before.
if flat := f.newCache.sizeRecursive(thisHash.Key()); flat != nil {
f.updateCache.deleteRecursive(thisHash)
f.updateCache.replaceHashed(thisHash, folder.parent, *flat)
}
}
return nil
}
// scannerItem represents each file while walking.
type scannerItem struct {
Path string
bucket string // Bucket.
prefix string // Only the prefix if any, does not have final object name.
objectName string // Only the object name without prefixes.
replication replicationConfig
lifeCycle *lifecycle.Lifecycle
Typ fs.FileMode
heal struct {
enabled bool
bitrot bool
} // Has the object been selected for heal check?
debug bool
}
type sizeSummary struct {
totalSize int64
versions uint64
replicatedSize int64
pendingSize int64
failedSize int64
replicaSize int64
pendingCount uint64
failedCount uint64
replTargetStats map[string]replTargetSizeSummary
tiers map[string]tierStats
}
// replTargetSizeSummary holds summary of replication stats by target
type replTargetSizeSummary struct {
replicatedSize int64
pendingSize int64
failedSize int64
pendingCount uint64
failedCount uint64
}
type getSizeFn func(item scannerItem) (sizeSummary, error)
// transformMetaDir will transform a directory to prefix/file.ext
func (i *scannerItem) transformMetaDir() {
split := strings.Split(i.prefix, SlashSeparator)
if len(split) > 1 {
i.prefix = path.Join(split[:len(split)-1]...)
} else {
i.prefix = ""
}
// Object name is last element
i.objectName = split[len(split)-1]
}
var (
applyActionsLogPrefix = color.Green("applyActions:")
applyVersionActionsLogPrefix = color.Green("applyVersionActions:")
)
func (i *scannerItem) applyHealing(ctx context.Context, o ObjectLayer, oi ObjectInfo) (size int64) {
if i.debug {
if oi.VersionID != "" {
console.Debugf(applyActionsLogPrefix+" heal checking: %v/%v v(%s)\n", i.bucket, i.objectPath(), oi.VersionID)
} else {
console.Debugf(applyActionsLogPrefix+" heal checking: %v/%v\n", i.bucket, i.objectPath())
}
}
scanMode := madmin.HealNormalScan
if i.heal.bitrot {
scanMode = madmin.HealDeepScan
}
healOpts := madmin.HealOpts{
Remove: healDeleteDangling,
ScanMode: scanMode,
}
res, err := o.HealObject(ctx, i.bucket, i.objectPath(), oi.VersionID, healOpts)
if err != nil {
if errors.Is(err, NotImplemented{}) || isErrObjectNotFound(err) || isErrVersionNotFound(err) {
err = nil
}
logger.LogIf(ctx, err)
return 0
}
return res.ObjectSize
}
func (i *scannerItem) applyLifecycle(ctx context.Context, o ObjectLayer, oi ObjectInfo) (applied bool, size int64) {
size, err := oi.GetActualSize()
if i.debug {
logger.LogIf(ctx, err)
}
if i.lifeCycle == nil {
if i.debug {
// disabled, very chatty:
// console.Debugf(applyActionsLogPrefix+" no lifecycle rules to apply: %q\n", i.objectPath())
}
return false, size
}
versionID := oi.VersionID
rCfg, _ := globalBucketObjectLockSys.Get(i.bucket)
lcEvt := evalActionFromLifecycle(ctx, *i.lifeCycle, rCfg, oi)
if i.debug {
if versionID != "" {
console.Debugf(applyActionsLogPrefix+" lifecycle: %q (version-id=%s), Initial scan: %v\n", i.objectPath(), versionID, lcEvt.Action)
} else {
console.Debugf(applyActionsLogPrefix+" lifecycle: %q Initial scan: %v\n", i.objectPath(), lcEvt.Action)
}
}
defer globalScannerMetrics.timeILM(lcEvt.Action)
switch lcEvt.Action {
case lifecycle.DeleteAction, lifecycle.DeleteVersionAction, lifecycle.DeleteRestoredAction, lifecycle.DeleteRestoredVersionAction:
return applyLifecycleAction(lcEvt.Action, oi, ""), 0
case lifecycle.TransitionAction, lifecycle.TransitionVersionAction:
return applyLifecycleAction(lcEvt.Action, oi, lcEvt.StorageClass), size
default:
// No action.
return false, size
}
}
// applyTierObjSweep removes remote object pending deletion and the free-version
// tracking this information.
func (i *scannerItem) applyTierObjSweep(ctx context.Context, o ObjectLayer, oi ObjectInfo) {
if !oi.TransitionedObject.FreeVersion {
// nothing to be done
return
}
ignoreNotFoundErr := func(err error) error {
switch {
case isErrVersionNotFound(err), isErrObjectNotFound(err):
return nil
}
return err
}
// Remove the remote object
err := deleteObjectFromRemoteTier(ctx, oi.TransitionedObject.Name, oi.TransitionedObject.VersionID, oi.TransitionedObject.Tier)
if ignoreNotFoundErr(err) != nil {
logger.LogIf(ctx, err)
return
}
// Remove this free version
_, err = o.DeleteObject(ctx, oi.Bucket, oi.Name, ObjectOptions{
VersionID: oi.VersionID,
})
if err == nil {
auditLogLifecycle(ctx, oi, ILMFreeVersionDelete)
}
if ignoreNotFoundErr(err) != nil {
logger.LogIf(ctx, err)
}
}
// applyNewerNoncurrentVersionLimit removes noncurrent versions older than the most recent NewerNoncurrentVersions configured.
// Note: This function doesn't update sizeSummary since it always removes versions that it doesn't return.
func (i *scannerItem) applyNewerNoncurrentVersionLimit(ctx context.Context, _ ObjectLayer, fivs []FileInfo) ([]FileInfo, error) {
if i.lifeCycle == nil {
return fivs, nil
}
_, days, lim := i.lifeCycle.NoncurrentVersionsExpirationLimit(lifecycle.ObjectOpts{Name: i.objectPath()})
if lim == 0 || len(fivs) <= lim+1 { // fewer than lim _noncurrent_ versions
return fivs, nil
}
overflowVersions := fivs[lim+1:]
// current version + most recent lim noncurrent versions
fivs = fivs[:lim+1]
rcfg, _ := globalBucketObjectLockSys.Get(i.bucket)
vcfg, _ := globalBucketVersioningSys.Get(i.bucket)
versioned := vcfg != nil && vcfg.Versioned(i.objectPath())
toDel := make([]ObjectToDelete, 0, len(overflowVersions))
for _, fi := range overflowVersions {
obj := fi.ToObjectInfo(i.bucket, i.objectPath(), versioned)
// skip versions with object locking enabled
if rcfg.LockEnabled && enforceRetentionForDeletion(ctx, obj) {
if i.debug {
if obj.VersionID != "" {
console.Debugf(applyVersionActionsLogPrefix+" lifecycle: %s v(%s) is locked, not deleting\n", obj.Name, obj.VersionID)
} else {
console.Debugf(applyVersionActionsLogPrefix+" lifecycle: %s is locked, not deleting\n", obj.Name)
}
}
// add this version back to remaining versions for
// subsequent lifecycle policy applications
fivs = append(fivs, fi)
continue
}
// NoncurrentDays not passed yet.
if time.Now().UTC().Before(lifecycle.ExpectedExpiryTime(obj.SuccessorModTime, days)) {
// add this version back to remaining versions for
// subsequent lifecycle policy applications
fivs = append(fivs, fi)
continue
}
toDel = append(toDel, ObjectToDelete{
ObjectV: ObjectV{
ObjectName: fi.Name,
VersionID: fi.VersionID,
},
})
}
globalExpiryState.enqueueByNewerNoncurrent(i.bucket, toDel)
return fivs, nil
}
// applyVersionActions will apply lifecycle checks on all versions of a scanned item. Returns versions that remain
// after applying lifecycle checks configured.
func (i *scannerItem) applyVersionActions(ctx context.Context, o ObjectLayer, fivs []FileInfo) ([]FileInfo, error) {
return i.applyNewerNoncurrentVersionLimit(ctx, o, fivs)
}
// applyActions will apply lifecycle checks on to a scanned item.
// The resulting size on disk will always be returned.
// The metadata will be compared to consensus on the object layer before any changes are applied.
// If no metadata is supplied, -1 is returned if no action is taken.
func (i *scannerItem) applyActions(ctx context.Context, o ObjectLayer, oi ObjectInfo, sizeS *sizeSummary) int64 {
done := globalScannerMetrics.time(scannerMetricILM)
applied, size := i.applyLifecycle(ctx, o, oi)
done()
// For instance, an applied lifecycle means we remove/transitioned an object
// from the current deployment, which means we don't have to call healing
// routine even if we are asked to do via heal flag.
if !applied {
if i.heal.enabled {
done := globalScannerMetrics.time(scannerMetricHealCheck)
size = i.applyHealing(ctx, o, oi)
done()
}
// replicate only if lifecycle rules are not applied.
done := globalScannerMetrics.time(scannerMetricCheckReplication)
i.healReplication(ctx, o, oi.Clone(), sizeS)
done()
}
return size
}
func evalActionFromLifecycle(ctx context.Context, lc lifecycle.Lifecycle, lr lock.Retention, obj ObjectInfo) lifecycle.Event {
event := lc.Eval(obj.ToLifecycleOpts(), time.Now().UTC())
if serverDebugLog {
console.Debugf(applyActionsLogPrefix+" lifecycle: Secondary scan: %v\n", event.Action)
}
if event.Action == lifecycle.NoneAction {
return event
}
switch event.Action {
case lifecycle.DeleteVersionAction, lifecycle.DeleteRestoredVersionAction:
// Defensive code, should never happen
if obj.VersionID == "" {
return lifecycle.Event{Action: lifecycle.NoneAction}
}
if lr.LockEnabled && enforceRetentionForDeletion(ctx, obj) {
if serverDebugLog {
if obj.VersionID != "" {
console.Debugf(applyActionsLogPrefix+" lifecycle: %s v(%s) is locked, not deleting\n", obj.Name, obj.VersionID)
} else {
console.Debugf(applyActionsLogPrefix+" lifecycle: %s is locked, not deleting\n", obj.Name)
}
}
return lifecycle.Event{Action: lifecycle.NoneAction}
}
}
return event
}
func applyTransitionRule(obj ObjectInfo, storageClass string) bool {
if obj.DeleteMarker {
return false
}
globalTransitionState.queueTransitionTask(obj, storageClass)
return true
}
func applyExpiryOnTransitionedObject(ctx context.Context, objLayer ObjectLayer, obj ObjectInfo, restoredObject bool) bool {
action := expireObj
if restoredObject {
action = expireRestoredObj
}
if err := expireTransitionedObject(ctx, objLayer, &obj, obj.ToLifecycleOpts(), action); err != nil {
if isErrObjectNotFound(err) || isErrVersionNotFound(err) {
return false
}
logger.LogIf(ctx, err)
return false
}
// Notification already sent in *expireTransitionedObject*, just return 'true' here.
return true
}
func applyExpiryOnNonTransitionedObjects(ctx context.Context, objLayer ObjectLayer, obj ObjectInfo, applyOnVersion bool) bool {
opts := ObjectOptions{
Expiration: ExpirationOptions{Expire: true},
}
if applyOnVersion {
opts.VersionID = obj.VersionID
}
if opts.VersionID == "" {
opts.Versioned = globalBucketVersioningSys.PrefixEnabled(obj.Bucket, obj.Name)
opts.VersionSuspended = globalBucketVersioningSys.PrefixSuspended(obj.Bucket, obj.Name)
}
obj, err := objLayer.DeleteObject(ctx, obj.Bucket, obj.Name, opts)
if err != nil {
if isErrObjectNotFound(err) || isErrVersionNotFound(err) {
return false
}
// Assume it is still there.
logger.LogIf(ctx, err)
return false
}
// Send audit for the lifecycle delete operation
auditLogLifecycle(ctx, obj, ILMExpiry)
eventName := event.ObjectRemovedDelete
if obj.DeleteMarker {
eventName = event.ObjectRemovedDeleteMarkerCreated
}
// Notify object deleted event.
sendEvent(eventArgs{
EventName: eventName,
BucketName: obj.Bucket,
Object: obj,
Host: "Internal: [ILM-EXPIRY]",
})
return true
}
// Apply object, object version, restored object or restored object version action on the given object
func applyExpiryRule(obj ObjectInfo, restoredObject, applyOnVersion bool) bool {
globalExpiryState.enqueueByDays(obj, restoredObject, applyOnVersion)
return true
}
// Perform actions (removal or transitioning of objects), return true the action is successfully performed
func applyLifecycleAction(action lifecycle.Action, obj ObjectInfo, storageClass string) (success bool) {
switch action {
case lifecycle.DeleteVersionAction, lifecycle.DeleteAction:
success = applyExpiryRule(obj, false, action == lifecycle.DeleteVersionAction)
case lifecycle.DeleteRestoredAction, lifecycle.DeleteRestoredVersionAction:
success = applyExpiryRule(obj, true, action == lifecycle.DeleteRestoredVersionAction)
case lifecycle.TransitionAction, lifecycle.TransitionVersionAction:
success = applyTransitionRule(obj, storageClass)
}
return
}
// objectPath returns the prefix and object name.
func (i *scannerItem) objectPath() string {
return path.Join(i.prefix, i.objectName)
}
// healReplication will heal a scanned item that has failed replication.
func (i *scannerItem) healReplication(ctx context.Context, o ObjectLayer, oi ObjectInfo, sizeS *sizeSummary) {
if oi.VersionID == "" {
return
}
if i.replication.Config == nil {
return
}
roi := queueReplicationHeal(ctx, oi.Bucket, oi, i.replication)
if oi.DeleteMarker || !oi.VersionPurgeStatus.Empty() {
return
}
if sizeS.replTargetStats == nil && len(roi.TargetStatuses) > 0 {
sizeS.replTargetStats = make(map[string]replTargetSizeSummary)
}
for arn, tgtStatus := range roi.TargetStatuses {
tgtSizeS, ok := sizeS.replTargetStats[arn]
if !ok {
tgtSizeS = replTargetSizeSummary{}
}
switch tgtStatus {
case replication.Pending:
tgtSizeS.pendingCount++
tgtSizeS.pendingSize += oi.Size
sizeS.pendingCount++
sizeS.pendingSize += oi.Size
case replication.Failed:
tgtSizeS.failedSize += oi.Size
tgtSizeS.failedCount++
sizeS.failedSize += oi.Size
sizeS.failedCount++
case replication.Completed, replication.CompletedLegacy:
tgtSizeS.replicatedSize += oi.Size
sizeS.replicatedSize += oi.Size
}
sizeS.replTargetStats[arn] = tgtSizeS
}
switch oi.ReplicationStatus {
case replication.Replica:
sizeS.replicaSize += oi.Size
}
}
type dynamicSleeper struct {
mu sync.RWMutex
// Sleep factor
factor float64
// maximum sleep cap,
// set to <= 0 to disable.
maxSleep time.Duration
// Don't sleep at all, if time taken is below this value.
// This is to avoid too small costly sleeps.
minSleep time.Duration
// cycle will be closed
cycle chan struct{}
// isScanner should be set when this is used by the scanner
// to record metrics.
isScanner bool
}
// newDynamicSleeper
func newDynamicSleeper(factor float64, maxWait time.Duration, isScanner bool) *dynamicSleeper {
return &dynamicSleeper{
factor: factor,
cycle: make(chan struct{}),
maxSleep: maxWait,
minSleep: 100 * time.Microsecond,
isScanner: isScanner,
}
}
// Timer returns a timer that has started.
// When the returned function is called it will wait.
func (d *dynamicSleeper) Timer(ctx context.Context) func() {
t := time.Now()
return func() {
doneAt := time.Now()
for {
// Grab current values
d.mu.RLock()
minWait, maxWait := d.minSleep, d.maxSleep
factor := d.factor
cycle := d.cycle
d.mu.RUnlock()
elapsed := doneAt.Sub(t)
// Don't sleep for really small amount of time
wantSleep := time.Duration(float64(elapsed) * factor)
if wantSleep <= minWait {
return
}
if maxWait > 0 && wantSleep > maxWait {
wantSleep = maxWait
}
timer := time.NewTimer(wantSleep)
select {
case <-ctx.Done():
if !timer.Stop() {
if d.isScanner {
globalScannerMetrics.incTime(scannerMetricYield, wantSleep)
}
<-timer.C
}
return
case <-timer.C:
if d.isScanner {
globalScannerMetrics.incTime(scannerMetricYield, wantSleep)
}
return
case <-cycle:
if !timer.Stop() {
// We expired.
<-timer.C
if d.isScanner {
globalScannerMetrics.incTime(scannerMetricYield, wantSleep)
}
return
}
}
}
}
}
// Sleep sleeps the specified time multiplied by the sleep factor.
// If the factor is updated the sleep will be done again with the new factor.
func (d *dynamicSleeper) Sleep(ctx context.Context, base time.Duration) {
for {
// Grab current values
d.mu.RLock()
minWait, maxWait := d.minSleep, d.maxSleep
factor := d.factor
cycle := d.cycle
d.mu.RUnlock()
// Don't sleep for really small amount of time
wantSleep := time.Duration(float64(base) * factor)
if wantSleep <= minWait {
return
}
if maxWait > 0 && wantSleep > maxWait {
wantSleep = maxWait
}
timer := time.NewTimer(wantSleep)
select {
case <-ctx.Done():
if !timer.Stop() {
<-timer.C
if d.isScanner {
globalScannerMetrics.incTime(scannerMetricYield, wantSleep)
}
}
return
case <-timer.C:
if d.isScanner {
globalScannerMetrics.incTime(scannerMetricYield, wantSleep)
}
return
case <-cycle:
if !timer.Stop() {
// We expired.
<-timer.C
if d.isScanner {
globalScannerMetrics.incTime(scannerMetricYield, wantSleep)
}
return
}
}
}
}
// Update the current settings and cycle all waiting.
// Parameters are the same as in the contructor.
func (d *dynamicSleeper) Update(factor float64, maxWait time.Duration) error {
d.mu.Lock()
defer d.mu.Unlock()
if math.Abs(d.factor-factor) < 1e-10 && d.maxSleep == maxWait {
return nil
}
// Update values and cycle waiting.
close(d.cycle)
d.factor = factor
d.maxSleep = maxWait
d.cycle = make(chan struct{})
return nil
}
const (
// ILMExpiry - audit trail for ILM expiry
ILMExpiry = "ilm:expiry"
// ILMFreeVersionDelete - audit trail for ILM free-version delete
ILMFreeVersionDelete = "ilm:free-version-delete"
// ILMTransition - audit trail for ILM transitioning.
ILMTransition = " ilm:transition"
)
func auditLogLifecycle(ctx context.Context, oi ObjectInfo, event string) {
var apiName string
switch event {
case ILMExpiry:
apiName = "ILMExpiry"
case ILMFreeVersionDelete:
apiName = "ILMFreeVersionDelete"
case ILMTransition:
apiName = "ILMTransition"
}
auditLogInternal(ctx, AuditLogOptions{
Event: event,
APIName: apiName,
Bucket: oi.Bucket,
Object: oi.Name,
VersionID: oi.VersionID,
})
}