mirror of https://github.com/minio/minio.git
144 lines
5.0 KiB
Go
144 lines
5.0 KiB
Go
// Copyright (c) 2015-2021 MinIO, Inc.
|
|
//
|
|
// This file is part of MinIO Object Storage stack
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package fips provides functionality to configure cryptographic
|
|
// implementations compliant with FIPS 140.
|
|
//
|
|
// FIPS 140 [1] is a US standard for data processing that specifies
|
|
// requirements for cryptographic modules. Software that is "FIPS 140
|
|
// compliant" must use approved cryptographic primitives only and that
|
|
// are implemented by a FIPS 140 certified cryptographic module.
|
|
//
|
|
// So, FIPS 140 requires that a certified implementation of e.g. AES
|
|
// is used to implement more high-level cryptographic protocols.
|
|
// It does not require any specific security criteria for those
|
|
// high-level protocols. FIPS 140 focuses only on the implementation
|
|
// and usage of the most low-level cryptographic building blocks.
|
|
//
|
|
// [1]: https://en.wikipedia.org/wiki/FIPS_140
|
|
package fips
|
|
|
|
import (
|
|
"crypto/tls"
|
|
|
|
"github.com/minio/sio"
|
|
)
|
|
|
|
// Enabled indicates whether cryptographic primitives,
|
|
// like AES or SHA-256, are implemented using a FIPS 140
|
|
// certified module.
|
|
//
|
|
// If FIPS-140 is enabled no non-NIST/FIPS approved
|
|
// primitives must be used.
|
|
const Enabled = enabled
|
|
|
|
// DARECiphers returns a list of supported cipher suites
|
|
// for the DARE object encryption.
|
|
func DARECiphers() []byte {
|
|
if Enabled {
|
|
return []byte{sio.AES_256_GCM}
|
|
}
|
|
return []byte{sio.AES_256_GCM, sio.CHACHA20_POLY1305}
|
|
}
|
|
|
|
// TLSCiphers returns a list of supported TLS transport
|
|
// cipher suite IDs.
|
|
//
|
|
// The list contains only ciphers that use AES-GCM or
|
|
// (non-FIPS) CHACHA20-POLY1305 and ellitpic curve key
|
|
// exchange.
|
|
func TLSCiphers() []uint16 {
|
|
if Enabled {
|
|
return []uint16{
|
|
tls.TLS_AES_128_GCM_SHA256, // TLS 1.3
|
|
tls.TLS_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
}
|
|
}
|
|
return []uint16{
|
|
tls.TLS_CHACHA20_POLY1305_SHA256, // TLS 1.3
|
|
tls.TLS_AES_128_GCM_SHA256,
|
|
tls.TLS_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, // TLS 1.2
|
|
tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
}
|
|
}
|
|
|
|
// TLSCiphersBackwardCompatible returns a list of supported
|
|
// TLS transport cipher suite IDs.
|
|
//
|
|
// In contrast to TLSCiphers, the list contains additional
|
|
// ciphers for backward compatibility. In particular, AES-CBC
|
|
// and non-ECDHE ciphers.
|
|
func TLSCiphersBackwardCompatible() []uint16 {
|
|
if Enabled {
|
|
return []uint16{
|
|
tls.TLS_AES_128_GCM_SHA256, // TLS 1.3
|
|
tls.TLS_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2 ECDHE GCM
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, // TLS 1.2 ECDHE CBC
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
|
|
tls.TLS_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2 non-ECDHE
|
|
tls.TLS_RSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
|
|
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
|
|
}
|
|
}
|
|
return []uint16{
|
|
tls.TLS_CHACHA20_POLY1305_SHA256, // TLS 1.3
|
|
tls.TLS_AES_128_GCM_SHA256,
|
|
tls.TLS_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, // TLS 1.2 ECDHE GCM / POLY1305
|
|
tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, // TLS 1.2 ECDHE CBC
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
|
|
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
|
|
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
|
|
tls.TLS_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2 non-ECDHE
|
|
tls.TLS_RSA_WITH_AES_256_GCM_SHA384,
|
|
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
|
|
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
|
|
}
|
|
}
|
|
|
|
// TLSCurveIDs returns a list of supported elliptic curve IDs
|
|
// in preference order.
|
|
func TLSCurveIDs() []tls.CurveID {
|
|
var curves []tls.CurveID
|
|
if !Enabled {
|
|
curves = append(curves, tls.X25519) // Only enable X25519 in non-FIPS mode
|
|
}
|
|
curves = append(curves, tls.CurveP256, tls.CurveP384, tls.CurveP521)
|
|
return curves
|
|
}
|