mirror of
https://github.com/minio/minio.git
synced 2025-01-27 06:33:18 -05:00
02af37a394
The reedsolomon library now avoids allocations during reconstruction. This change exploits that to reduce memory allocs and GC preasure during healing and reading.
828 lines
25 KiB
Go
828 lines
25 KiB
Go
/**
|
|
* Reed-Solomon Coding over 8-bit values.
|
|
*
|
|
* Copyright 2015, Klaus Post
|
|
* Copyright 2015, Backblaze, Inc.
|
|
*/
|
|
|
|
// Package reedsolomon enables Erasure Coding in Go
|
|
//
|
|
// For usage and examples, see https://github.com/klauspost/reedsolomon
|
|
//
|
|
package reedsolomon
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"io"
|
|
"sync"
|
|
)
|
|
|
|
// Encoder is an interface to encode Reed-Salomon parity sets for your data.
|
|
type Encoder interface {
|
|
// Encodes parity for a set of data shards.
|
|
// Input is 'shards' containing data shards followed by parity shards.
|
|
// The number of shards must match the number given to New().
|
|
// Each shard is a byte array, and they must all be the same size.
|
|
// The parity shards will always be overwritten and the data shards
|
|
// will remain the same, so it is safe for you to read from the
|
|
// data shards while this is running.
|
|
Encode(shards [][]byte) error
|
|
|
|
// Verify returns true if the parity shards contain correct data.
|
|
// The data is the same format as Encode. No data is modified, so
|
|
// you are allowed to read from data while this is running.
|
|
Verify(shards [][]byte) (bool, error)
|
|
|
|
// Reconstruct will recreate the missing shards if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// ones that don't have data.
|
|
//
|
|
// The length of the array must be equal to the total number of shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// The reconstructed shard set is complete, but integrity is not verified.
|
|
// Use the Verify function to check if data set is ok.
|
|
Reconstruct(shards [][]byte) error
|
|
|
|
// ReconstructData will recreate any missing data shards, if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// data shards that don't have data.
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// As the reconstructed shard set may contain missing parity shards,
|
|
// calling the Verify function is likely to fail.
|
|
ReconstructData(shards [][]byte) error
|
|
|
|
// Update parity is use for change a few data shards and update it's parity.
|
|
// Input 'newDatashards' containing data shards changed.
|
|
// Input 'shards' containing old data shards (if data shard not changed, it can be nil) and old parity shards.
|
|
// new parity shards will in shards[DataShards:]
|
|
// Update is very useful if DataShards much larger than ParityShards and changed data shards is few. It will
|
|
// faster than Encode and not need read all data shards to encode.
|
|
Update(shards [][]byte, newDatashards [][]byte) error
|
|
|
|
// Split a data slice into the number of shards given to the encoder,
|
|
// and create empty parity shards.
|
|
//
|
|
// The data will be split into equally sized shards.
|
|
// If the data size isn't dividable by the number of shards,
|
|
// the last shard will contain extra zeros.
|
|
//
|
|
// There must be at least 1 byte otherwise ErrShortData will be
|
|
// returned.
|
|
//
|
|
// The data will not be copied, except for the last shard, so you
|
|
// should not modify the data of the input slice afterwards.
|
|
Split(data []byte) ([][]byte, error)
|
|
|
|
// Join the shards and write the data segment to dst.
|
|
//
|
|
// Only the data shards are considered.
|
|
// You must supply the exact output size you want.
|
|
// If there are to few shards given, ErrTooFewShards will be returned.
|
|
// If the total data size is less than outSize, ErrShortData will be returned.
|
|
Join(dst io.Writer, shards [][]byte, outSize int) error
|
|
}
|
|
|
|
// reedSolomon contains a matrix for a specific
|
|
// distribution of datashards and parity shards.
|
|
// Construct if using New()
|
|
type reedSolomon struct {
|
|
DataShards int // Number of data shards, should not be modified.
|
|
ParityShards int // Number of parity shards, should not be modified.
|
|
Shards int // Total number of shards. Calculated, and should not be modified.
|
|
m matrix
|
|
tree inversionTree
|
|
parity [][]byte
|
|
o options
|
|
}
|
|
|
|
// ErrInvShardNum will be returned by New, if you attempt to create
|
|
// an Encoder where either data or parity shards is zero or less.
|
|
var ErrInvShardNum = errors.New("cannot create Encoder with zero or less data/parity shards")
|
|
|
|
// ErrMaxShardNum will be returned by New, if you attempt to create an
|
|
// Encoder where data and parity shards are bigger than the order of
|
|
// GF(2^8).
|
|
var ErrMaxShardNum = errors.New("cannot create Encoder with more than 256 data+parity shards")
|
|
|
|
// buildMatrix creates the matrix to use for encoding, given the
|
|
// number of data shards and the number of total shards.
|
|
//
|
|
// The top square of the matrix is guaranteed to be an identity
|
|
// matrix, which means that the data shards are unchanged after
|
|
// encoding.
|
|
func buildMatrix(dataShards, totalShards int) (matrix, error) {
|
|
// Start with a Vandermonde matrix. This matrix would work,
|
|
// in theory, but doesn't have the property that the data
|
|
// shards are unchanged after encoding.
|
|
vm, err := vandermonde(totalShards, dataShards)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Multiply by the inverse of the top square of the matrix.
|
|
// This will make the top square be the identity matrix, but
|
|
// preserve the property that any square subset of rows is
|
|
// invertible.
|
|
top, err := vm.SubMatrix(0, 0, dataShards, dataShards)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
topInv, err := top.Invert()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return vm.Multiply(topInv)
|
|
}
|
|
|
|
// buildMatrixPAR1 creates the matrix to use for encoding according to
|
|
// the PARv1 spec, given the number of data shards and the number of
|
|
// total shards. Note that the method they use is buggy, and may lead
|
|
// to cases where recovery is impossible, even if there are enough
|
|
// parity shards.
|
|
//
|
|
// The top square of the matrix is guaranteed to be an identity
|
|
// matrix, which means that the data shards are unchanged after
|
|
// encoding.
|
|
func buildMatrixPAR1(dataShards, totalShards int) (matrix, error) {
|
|
result, err := newMatrix(totalShards, dataShards)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
for r, row := range result {
|
|
// The top portion of the matrix is the identity
|
|
// matrix, and the bottom is a transposed Vandermonde
|
|
// matrix starting at 1 instead of 0.
|
|
if r < dataShards {
|
|
result[r][r] = 1
|
|
} else {
|
|
for c := range row {
|
|
result[r][c] = galExp(byte(c+1), r-dataShards)
|
|
}
|
|
}
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
// New creates a new encoder and initializes it to
|
|
// the number of data shards and parity shards that
|
|
// you want to use. You can reuse this encoder.
|
|
// Note that the maximum number of total shards is 256.
|
|
// If no options are supplied, default options are used.
|
|
func New(dataShards, parityShards int, opts ...Option) (Encoder, error) {
|
|
r := reedSolomon{
|
|
DataShards: dataShards,
|
|
ParityShards: parityShards,
|
|
Shards: dataShards + parityShards,
|
|
o: defaultOptions,
|
|
}
|
|
|
|
for _, opt := range opts {
|
|
opt(&r.o)
|
|
}
|
|
if dataShards <= 0 || parityShards <= 0 {
|
|
return nil, ErrInvShardNum
|
|
}
|
|
|
|
if dataShards+parityShards > 256 {
|
|
return nil, ErrMaxShardNum
|
|
}
|
|
|
|
var err error
|
|
if r.o.usePAR1Matrix {
|
|
r.m, err = buildMatrixPAR1(dataShards, r.Shards)
|
|
} else {
|
|
r.m, err = buildMatrix(dataShards, r.Shards)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Inverted matrices are cached in a tree keyed by the indices
|
|
// of the invalid rows of the data to reconstruct.
|
|
// The inversion root node will have the identity matrix as
|
|
// its inversion matrix because it implies there are no errors
|
|
// with the original data.
|
|
r.tree = newInversionTree(dataShards, parityShards)
|
|
|
|
r.parity = make([][]byte, parityShards)
|
|
for i := range r.parity {
|
|
r.parity[i] = r.m[dataShards+i]
|
|
}
|
|
|
|
return &r, err
|
|
}
|
|
|
|
// ErrTooFewShards is returned if too few shards where given to
|
|
// Encode/Verify/Reconstruct/Update. It will also be returned from Reconstruct
|
|
// if there were too few shards to reconstruct the missing data.
|
|
var ErrTooFewShards = errors.New("too few shards given")
|
|
|
|
// Encodes parity for a set of data shards.
|
|
// An array 'shards' containing data shards followed by parity shards.
|
|
// The number of shards must match the number given to New.
|
|
// Each shard is a byte array, and they must all be the same size.
|
|
// The parity shards will always be overwritten and the data shards
|
|
// will remain the same.
|
|
func (r reedSolomon) Encode(shards [][]byte) error {
|
|
if len(shards) != r.Shards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
err := checkShards(shards, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Get the slice of output buffers.
|
|
output := shards[r.DataShards:]
|
|
|
|
// Do the coding.
|
|
r.codeSomeShards(r.parity, shards[0:r.DataShards], output, r.ParityShards, len(shards[0]))
|
|
return nil
|
|
}
|
|
|
|
// ErrInvalidInput is returned if invalid input parameter of Update.
|
|
var ErrInvalidInput = errors.New("invalid input")
|
|
|
|
func (r reedSolomon) Update(shards [][]byte, newDatashards [][]byte) error {
|
|
if len(shards) != r.Shards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
if len(newDatashards) != r.DataShards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
err := checkShards(shards, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
err = checkShards(newDatashards, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for i := range newDatashards {
|
|
if newDatashards[i] != nil && shards[i] == nil {
|
|
return ErrInvalidInput
|
|
}
|
|
}
|
|
for _, p := range shards[r.DataShards:] {
|
|
if p == nil {
|
|
return ErrInvalidInput
|
|
}
|
|
}
|
|
|
|
shardSize := shardSize(shards)
|
|
|
|
// Get the slice of output buffers.
|
|
output := shards[r.DataShards:]
|
|
|
|
// Do the coding.
|
|
r.updateParityShards(r.parity, shards[0:r.DataShards], newDatashards[0:r.DataShards], output, r.ParityShards, shardSize)
|
|
return nil
|
|
}
|
|
|
|
func (r reedSolomon) updateParityShards(matrixRows, oldinputs, newinputs, outputs [][]byte, outputCount, byteCount int) {
|
|
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
|
r.updateParityShardsP(matrixRows, oldinputs, newinputs, outputs, outputCount, byteCount)
|
|
return
|
|
}
|
|
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := newinputs[c]
|
|
if in == nil {
|
|
continue
|
|
}
|
|
oldin := oldinputs[c]
|
|
// oldinputs data will be change
|
|
sliceXor(in, oldin, r.o.useSSE2)
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], oldin, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (r reedSolomon) updateParityShardsP(matrixRows, oldinputs, newinputs, outputs [][]byte, outputCount, byteCount int) {
|
|
var wg sync.WaitGroup
|
|
do := byteCount / r.o.maxGoroutines
|
|
if do < r.o.minSplitSize {
|
|
do = r.o.minSplitSize
|
|
}
|
|
start := 0
|
|
for start < byteCount {
|
|
if start+do > byteCount {
|
|
do = byteCount - start
|
|
}
|
|
wg.Add(1)
|
|
go func(start, stop int) {
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := newinputs[c]
|
|
if in == nil {
|
|
continue
|
|
}
|
|
oldin := oldinputs[c]
|
|
// oldinputs data will be change
|
|
sliceXor(in[start:stop], oldin[start:stop], r.o.useSSE2)
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], oldin[start:stop], outputs[iRow][start:stop], r.o.useSSSE3, r.o.useAVX2)
|
|
}
|
|
}
|
|
wg.Done()
|
|
}(start, start+do)
|
|
start += do
|
|
}
|
|
wg.Wait()
|
|
}
|
|
|
|
// Verify returns true if the parity shards contain the right data.
|
|
// The data is the same format as Encode. No data is modified.
|
|
func (r reedSolomon) Verify(shards [][]byte) (bool, error) {
|
|
if len(shards) != r.Shards {
|
|
return false, ErrTooFewShards
|
|
}
|
|
err := checkShards(shards, false)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
// Slice of buffers being checked.
|
|
toCheck := shards[r.DataShards:]
|
|
|
|
// Do the checking.
|
|
return r.checkSomeShards(r.parity, shards[0:r.DataShards], toCheck, r.ParityShards, len(shards[0])), nil
|
|
}
|
|
|
|
// Multiplies a subset of rows from a coding matrix by a full set of
|
|
// input shards to produce some output shards.
|
|
// 'matrixRows' is The rows from the matrix to use.
|
|
// 'inputs' An array of byte arrays, each of which is one input shard.
|
|
// The number of inputs used is determined by the length of each matrix row.
|
|
// outputs Byte arrays where the computed shards are stored.
|
|
// The number of outputs computed, and the
|
|
// number of matrix rows used, is determined by
|
|
// outputCount, which is the number of outputs to compute.
|
|
func (r reedSolomon) codeSomeShards(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
|
|
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
|
r.codeSomeShardsP(matrixRows, inputs, outputs, outputCount, byteCount)
|
|
return
|
|
}
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := inputs[c]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
if c == 0 {
|
|
galMulSlice(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
|
} else {
|
|
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform the same as codeSomeShards, but split the workload into
|
|
// several goroutines.
|
|
func (r reedSolomon) codeSomeShardsP(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
|
|
var wg sync.WaitGroup
|
|
do := byteCount / r.o.maxGoroutines
|
|
if do < r.o.minSplitSize {
|
|
do = r.o.minSplitSize
|
|
}
|
|
start := 0
|
|
for start < byteCount {
|
|
if start+do > byteCount {
|
|
do = byteCount - start
|
|
}
|
|
wg.Add(1)
|
|
go func(start, stop int) {
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := inputs[c]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
if c == 0 {
|
|
galMulSlice(matrixRows[iRow][c], in[start:stop], outputs[iRow][start:stop], r.o.useSSSE3, r.o.useAVX2)
|
|
} else {
|
|
galMulSliceXor(matrixRows[iRow][c], in[start:stop], outputs[iRow][start:stop], r.o.useSSSE3, r.o.useAVX2)
|
|
}
|
|
}
|
|
}
|
|
wg.Done()
|
|
}(start, start+do)
|
|
start += do
|
|
}
|
|
wg.Wait()
|
|
}
|
|
|
|
// checkSomeShards is mostly the same as codeSomeShards,
|
|
// except this will check values and return
|
|
// as soon as a difference is found.
|
|
func (r reedSolomon) checkSomeShards(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
|
|
if r.o.maxGoroutines > 1 && byteCount > r.o.minSplitSize {
|
|
return r.checkSomeShardsP(matrixRows, inputs, toCheck, outputCount, byteCount)
|
|
}
|
|
outputs := make([][]byte, len(toCheck))
|
|
for i := range outputs {
|
|
outputs[i] = make([]byte, byteCount)
|
|
}
|
|
for c := 0; c < r.DataShards; c++ {
|
|
in := inputs[c]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
|
}
|
|
}
|
|
|
|
for i, calc := range outputs {
|
|
if !bytes.Equal(calc, toCheck[i]) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (r reedSolomon) checkSomeShardsP(matrixRows, inputs, toCheck [][]byte, outputCount, byteCount int) bool {
|
|
same := true
|
|
var mu sync.RWMutex // For above
|
|
|
|
var wg sync.WaitGroup
|
|
do := byteCount / r.o.maxGoroutines
|
|
if do < r.o.minSplitSize {
|
|
do = r.o.minSplitSize
|
|
}
|
|
start := 0
|
|
for start < byteCount {
|
|
if start+do > byteCount {
|
|
do = byteCount - start
|
|
}
|
|
wg.Add(1)
|
|
go func(start, do int) {
|
|
defer wg.Done()
|
|
outputs := make([][]byte, len(toCheck))
|
|
for i := range outputs {
|
|
outputs[i] = make([]byte, do)
|
|
}
|
|
for c := 0; c < r.DataShards; c++ {
|
|
mu.RLock()
|
|
if !same {
|
|
mu.RUnlock()
|
|
return
|
|
}
|
|
mu.RUnlock()
|
|
in := inputs[c][start : start+do]
|
|
for iRow := 0; iRow < outputCount; iRow++ {
|
|
galMulSliceXor(matrixRows[iRow][c], in, outputs[iRow], r.o.useSSSE3, r.o.useAVX2)
|
|
}
|
|
}
|
|
|
|
for i, calc := range outputs {
|
|
if !bytes.Equal(calc, toCheck[i][start:start+do]) {
|
|
mu.Lock()
|
|
same = false
|
|
mu.Unlock()
|
|
return
|
|
}
|
|
}
|
|
}(start, do)
|
|
start += do
|
|
}
|
|
wg.Wait()
|
|
return same
|
|
}
|
|
|
|
// ErrShardNoData will be returned if there are no shards,
|
|
// or if the length of all shards is zero.
|
|
var ErrShardNoData = errors.New("no shard data")
|
|
|
|
// ErrShardSize is returned if shard length isn't the same for all
|
|
// shards.
|
|
var ErrShardSize = errors.New("shard sizes do not match")
|
|
|
|
// checkShards will check if shards are the same size
|
|
// or 0, if allowed. An error is returned if this fails.
|
|
// An error is also returned if all shards are size 0.
|
|
func checkShards(shards [][]byte, nilok bool) error {
|
|
size := shardSize(shards)
|
|
if size == 0 {
|
|
return ErrShardNoData
|
|
}
|
|
for _, shard := range shards {
|
|
if len(shard) != size {
|
|
if len(shard) != 0 || !nilok {
|
|
return ErrShardSize
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// shardSize return the size of a single shard.
|
|
// The first non-zero size is returned,
|
|
// or 0 if all shards are size 0.
|
|
func shardSize(shards [][]byte) int {
|
|
for _, shard := range shards {
|
|
if len(shard) != 0 {
|
|
return len(shard)
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// Reconstruct will recreate the missing shards, if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// ones that don't have data.
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// The reconstructed shard set is complete, but integrity is not verified.
|
|
// Use the Verify function to check if data set is ok.
|
|
func (r reedSolomon) Reconstruct(shards [][]byte) error {
|
|
return r.reconstruct(shards, false)
|
|
}
|
|
|
|
// ReconstructData will recreate any missing data shards, if possible.
|
|
//
|
|
// Given a list of shards, some of which contain data, fills in the
|
|
// data shards that don't have data.
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil or zero-length.
|
|
// If a shard is zero-length but has sufficient capacity, that memory will
|
|
// be used, otherwise a new []byte will be allocated.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
//
|
|
// As the reconstructed shard set may contain missing parity shards,
|
|
// calling the Verify function is likely to fail.
|
|
func (r reedSolomon) ReconstructData(shards [][]byte) error {
|
|
return r.reconstruct(shards, true)
|
|
}
|
|
|
|
// reconstruct will recreate the missing data shards, and unless
|
|
// dataOnly is true, also the missing parity shards
|
|
//
|
|
// The length of the array must be equal to Shards.
|
|
// You indicate that a shard is missing by setting it to nil.
|
|
//
|
|
// If there are too few shards to reconstruct the missing
|
|
// ones, ErrTooFewShards will be returned.
|
|
func (r reedSolomon) reconstruct(shards [][]byte, dataOnly bool) error {
|
|
if len(shards) != r.Shards {
|
|
return ErrTooFewShards
|
|
}
|
|
// Check arguments.
|
|
err := checkShards(shards, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
shardSize := shardSize(shards)
|
|
|
|
// Quick check: are all of the shards present? If so, there's
|
|
// nothing to do.
|
|
numberPresent := 0
|
|
for i := 0; i < r.Shards; i++ {
|
|
if len(shards[i]) != 0 {
|
|
numberPresent++
|
|
}
|
|
}
|
|
if numberPresent == r.Shards {
|
|
// Cool. All of the shards data data. We don't
|
|
// need to do anything.
|
|
return nil
|
|
}
|
|
|
|
// More complete sanity check
|
|
if numberPresent < r.DataShards {
|
|
return ErrTooFewShards
|
|
}
|
|
|
|
// Pull out an array holding just the shards that
|
|
// correspond to the rows of the submatrix. These shards
|
|
// will be the input to the decoding process that re-creates
|
|
// the missing data shards.
|
|
//
|
|
// Also, create an array of indices of the valid rows we do have
|
|
// and the invalid rows we don't have up until we have enough valid rows.
|
|
subShards := make([][]byte, r.DataShards)
|
|
validIndices := make([]int, r.DataShards)
|
|
invalidIndices := make([]int, 0)
|
|
subMatrixRow := 0
|
|
for matrixRow := 0; matrixRow < r.Shards && subMatrixRow < r.DataShards; matrixRow++ {
|
|
if len(shards[matrixRow]) != 0 {
|
|
subShards[subMatrixRow] = shards[matrixRow]
|
|
validIndices[subMatrixRow] = matrixRow
|
|
subMatrixRow++
|
|
} else {
|
|
invalidIndices = append(invalidIndices, matrixRow)
|
|
}
|
|
}
|
|
|
|
// Attempt to get the cached inverted matrix out of the tree
|
|
// based on the indices of the invalid rows.
|
|
dataDecodeMatrix := r.tree.GetInvertedMatrix(invalidIndices)
|
|
|
|
// If the inverted matrix isn't cached in the tree yet we must
|
|
// construct it ourselves and insert it into the tree for the
|
|
// future. In this way the inversion tree is lazily loaded.
|
|
if dataDecodeMatrix == nil {
|
|
// Pull out the rows of the matrix that correspond to the
|
|
// shards that we have and build a square matrix. This
|
|
// matrix could be used to generate the shards that we have
|
|
// from the original data.
|
|
subMatrix, _ := newMatrix(r.DataShards, r.DataShards)
|
|
for subMatrixRow, validIndex := range validIndices {
|
|
for c := 0; c < r.DataShards; c++ {
|
|
subMatrix[subMatrixRow][c] = r.m[validIndex][c]
|
|
}
|
|
}
|
|
// Invert the matrix, so we can go from the encoded shards
|
|
// back to the original data. Then pull out the row that
|
|
// generates the shard that we want to decode. Note that
|
|
// since this matrix maps back to the original data, it can
|
|
// be used to create a data shard, but not a parity shard.
|
|
dataDecodeMatrix, err = subMatrix.Invert()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Cache the inverted matrix in the tree for future use keyed on the
|
|
// indices of the invalid rows.
|
|
err = r.tree.InsertInvertedMatrix(invalidIndices, dataDecodeMatrix, r.Shards)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Re-create any data shards that were missing.
|
|
//
|
|
// The input to the coding is all of the shards we actually
|
|
// have, and the output is the missing data shards. The computation
|
|
// is done using the special decode matrix we just built.
|
|
outputs := make([][]byte, r.ParityShards)
|
|
matrixRows := make([][]byte, r.ParityShards)
|
|
outputCount := 0
|
|
|
|
for iShard := 0; iShard < r.DataShards; iShard++ {
|
|
if len(shards[iShard]) == 0 {
|
|
if cap(shards[iShard]) >= shardSize {
|
|
shards[iShard] = shards[iShard][0:shardSize]
|
|
} else {
|
|
shards[iShard] = make([]byte, shardSize)
|
|
}
|
|
outputs[outputCount] = shards[iShard]
|
|
matrixRows[outputCount] = dataDecodeMatrix[iShard]
|
|
outputCount++
|
|
}
|
|
}
|
|
r.codeSomeShards(matrixRows, subShards, outputs[:outputCount], outputCount, shardSize)
|
|
|
|
if dataOnly {
|
|
// Exit out early if we are only interested in the data shards
|
|
return nil
|
|
}
|
|
|
|
// Now that we have all of the data shards intact, we can
|
|
// compute any of the parity that is missing.
|
|
//
|
|
// The input to the coding is ALL of the data shards, including
|
|
// any that we just calculated. The output is whichever of the
|
|
// data shards were missing.
|
|
outputCount = 0
|
|
for iShard := r.DataShards; iShard < r.Shards; iShard++ {
|
|
if len(shards[iShard]) == 0 {
|
|
if cap(shards[iShard]) >= shardSize {
|
|
shards[iShard] = shards[iShard][0:shardSize]
|
|
} else {
|
|
shards[iShard] = make([]byte, shardSize)
|
|
}
|
|
outputs[outputCount] = shards[iShard]
|
|
matrixRows[outputCount] = r.parity[iShard-r.DataShards]
|
|
outputCount++
|
|
}
|
|
}
|
|
r.codeSomeShards(matrixRows, shards[:r.DataShards], outputs[:outputCount], outputCount, shardSize)
|
|
return nil
|
|
}
|
|
|
|
// ErrShortData will be returned by Split(), if there isn't enough data
|
|
// to fill the number of shards.
|
|
var ErrShortData = errors.New("not enough data to fill the number of requested shards")
|
|
|
|
// Split a data slice into the number of shards given to the encoder,
|
|
// and create empty parity shards if necessary.
|
|
//
|
|
// The data will be split into equally sized shards.
|
|
// If the data size isn't divisible by the number of shards,
|
|
// the last shard will contain extra zeros.
|
|
//
|
|
// There must be at least 1 byte otherwise ErrShortData will be
|
|
// returned.
|
|
//
|
|
// The data will not be copied, except for the last shard, so you
|
|
// should not modify the data of the input slice afterwards.
|
|
func (r reedSolomon) Split(data []byte) ([][]byte, error) {
|
|
if len(data) == 0 {
|
|
return nil, ErrShortData
|
|
}
|
|
// Calculate number of bytes per data shard.
|
|
perShard := (len(data) + r.DataShards - 1) / r.DataShards
|
|
|
|
if cap(data) > len(data) {
|
|
data = data[:cap(data)]
|
|
}
|
|
|
|
// Only allocate memory if necessary
|
|
if len(data) < (r.Shards * perShard) {
|
|
// Pad data to r.Shards*perShard.
|
|
padding := make([]byte, (r.Shards*perShard)-len(data))
|
|
data = append(data, padding...)
|
|
}
|
|
|
|
// Split into equal-length shards.
|
|
dst := make([][]byte, r.Shards)
|
|
for i := range dst {
|
|
dst[i] = data[:perShard]
|
|
data = data[perShard:]
|
|
}
|
|
|
|
return dst, nil
|
|
}
|
|
|
|
// ErrReconstructRequired is returned if too few data shards are intact and a
|
|
// reconstruction is required before you can successfully join the shards.
|
|
var ErrReconstructRequired = errors.New("reconstruction required as one or more required data shards are nil")
|
|
|
|
// Join the shards and write the data segment to dst.
|
|
//
|
|
// Only the data shards are considered.
|
|
// You must supply the exact output size you want.
|
|
//
|
|
// If there are to few shards given, ErrTooFewShards will be returned.
|
|
// If the total data size is less than outSize, ErrShortData will be returned.
|
|
// If one or more required data shards are nil, ErrReconstructRequired will be returned.
|
|
func (r reedSolomon) Join(dst io.Writer, shards [][]byte, outSize int) error {
|
|
// Do we have enough shards?
|
|
if len(shards) < r.DataShards {
|
|
return ErrTooFewShards
|
|
}
|
|
shards = shards[:r.DataShards]
|
|
|
|
// Do we have enough data?
|
|
size := 0
|
|
for _, shard := range shards {
|
|
if shard == nil {
|
|
return ErrReconstructRequired
|
|
}
|
|
size += len(shard)
|
|
|
|
// Do we have enough data already?
|
|
if size >= outSize {
|
|
break
|
|
}
|
|
}
|
|
if size < outSize {
|
|
return ErrShortData
|
|
}
|
|
|
|
// Copy data to dst
|
|
write := outSize
|
|
for _, shard := range shards {
|
|
if write < len(shard) {
|
|
_, err := dst.Write(shard[:write])
|
|
return err
|
|
}
|
|
n, err := dst.Write(shard)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
write -= n
|
|
}
|
|
return nil
|
|
}
|