minio/cmd/erasure-metadata-utils.go
Harshavardhana a7acfa6158
fix: pick valid FileInfo additionally based on dataDir (#12116)
* fix: pick valid FileInfo additionally based on dataDir

historically we have always relied on modTime
to be consistent and same, we can now add additional
reference to look for the same dataDir value.

A dataDir is the same for an object at a given point in
time for a given version, let's say a `null` version
is overwritten in quorum we do not by mistake pick
up the fileInfo's incorrectly.

* make sure to not preserve fi.Data

Signed-off-by: Harshavardhana <harsha@minio.io>
2021-04-21 19:06:08 -07:00

320 lines
10 KiB
Go

/*
* MinIO Cloud Storage, (C) 2016-2019 MinIO, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cmd
import (
"context"
"errors"
"fmt"
"hash/crc32"
"github.com/minio/minio/cmd/logger"
"github.com/minio/minio/pkg/sync/errgroup"
)
// Returns number of errors that occurred the most (incl. nil) and the
// corresponding error value. NB When there is more than one error value that
// occurs maximum number of times, the error value returned depends on how
// golang's map orders keys. This doesn't affect correctness as long as quorum
// value is greater than or equal to simple majority, since none of the equally
// maximal values would occur quorum or more number of times.
func reduceErrs(errs []error, ignoredErrs []error) (maxCount int, maxErr error) {
errorCounts := make(map[error]int)
for _, err := range errs {
if IsErrIgnored(err, ignoredErrs...) {
continue
}
errorCounts[err]++
}
max := 0
for err, count := range errorCounts {
switch {
case max < count:
max = count
maxErr = err
// Prefer `nil` over other error values with the same
// number of occurrences.
case max == count && err == nil:
maxErr = err
}
}
return max, maxErr
}
// reduceQuorumErrs behaves like reduceErrs by only for returning
// values of maximally occurring errors validated against a generic
// quorum number that can be read or write quorum depending on usage.
func reduceQuorumErrs(ctx context.Context, errs []error, ignoredErrs []error, quorum int, quorumErr error) error {
maxCount, maxErr := reduceErrs(errs, ignoredErrs)
if maxCount >= quorum {
return maxErr
}
return quorumErr
}
// reduceReadQuorumErrs behaves like reduceErrs but only for returning
// values of maximally occurring errors validated against readQuorum.
func reduceReadQuorumErrs(ctx context.Context, errs []error, ignoredErrs []error, readQuorum int) (maxErr error) {
return reduceQuorumErrs(ctx, errs, ignoredErrs, readQuorum, errErasureReadQuorum)
}
// reduceWriteQuorumErrs behaves like reduceErrs but only for returning
// values of maximally occurring errors validated against writeQuorum.
func reduceWriteQuorumErrs(ctx context.Context, errs []error, ignoredErrs []error, writeQuorum int) (maxErr error) {
return reduceQuorumErrs(ctx, errs, ignoredErrs, writeQuorum, errErasureWriteQuorum)
}
// Similar to 'len(slice)' but returns the actual elements count
// skipping the unallocated elements.
func diskCount(disks []StorageAPI) int {
diskCount := 0
for _, disk := range disks {
if disk == nil {
continue
}
diskCount++
}
return diskCount
}
// hashOrder - hashes input key to return consistent
// hashed integer slice. Returned integer order is salted
// with an input key. This results in consistent order.
// NOTE: collisions are fine, we are not looking for uniqueness
// in the slices returned.
func hashOrder(key string, cardinality int) []int {
if cardinality <= 0 {
// Returns an empty int slice for cardinality < 0.
return nil
}
nums := make([]int, cardinality)
keyCrc := crc32.Checksum([]byte(key), crc32.IEEETable)
start := int(keyCrc % uint32(cardinality))
for i := 1; i <= cardinality; i++ {
nums[i-1] = 1 + ((start + i) % cardinality)
}
return nums
}
// Reads all `xl.meta` metadata as a FileInfo slice.
// Returns error slice indicating the failed metadata reads.
func readAllFileInfo(ctx context.Context, disks []StorageAPI, bucket, object, versionID string, readData bool) ([]FileInfo, []error) {
metadataArray := make([]FileInfo, len(disks))
g := errgroup.WithNErrs(len(disks))
// Read `xl.meta` in parallel across disks.
for index := range disks {
index := index
g.Go(func() (err error) {
if disks[index] == nil {
return errDiskNotFound
}
metadataArray[index], err = disks[index].ReadVersion(ctx, bucket, object, versionID, readData)
if err != nil {
if !IsErr(err, []error{
errFileNotFound,
errVolumeNotFound,
errFileVersionNotFound,
errDiskNotFound,
}...) {
logger.LogOnceIf(ctx, fmt.Errorf("Drive %s, path (%s/%s) returned an error (%w)",
disks[index], bucket, object, err),
disks[index].String())
}
}
return err
}, index)
}
// Return all the metadata.
return metadataArray, g.Wait()
}
// shuffleDisksAndPartsMetadataByIndex this function should be always used by GetObjectNInfo()
// and CompleteMultipartUpload code path, it is not meant to be used with PutObject,
// NewMultipartUpload metadata shuffling.
func shuffleDisksAndPartsMetadataByIndex(disks []StorageAPI, metaArr []FileInfo, fi FileInfo) (shuffledDisks []StorageAPI, shuffledPartsMetadata []FileInfo) {
shuffledDisks = make([]StorageAPI, len(disks))
shuffledPartsMetadata = make([]FileInfo, len(disks))
distribution := fi.Erasure.Distribution
var inconsistent int
for i, meta := range metaArr {
if disks[i] == nil {
// Assuming offline drives as inconsistent,
// to be safe and fallback to original
// distribution order.
inconsistent++
continue
}
if !meta.IsValid() {
inconsistent++
continue
}
if len(fi.Data) != len(meta.Data) {
inconsistent++
continue
}
// check if erasure distribution order matches the index
// position if this is not correct we discard the disk
// and move to collect others
if distribution[i] != meta.Erasure.Index {
inconsistent++ // keep track of inconsistent entries
continue
}
shuffledDisks[meta.Erasure.Index-1] = disks[i]
shuffledPartsMetadata[meta.Erasure.Index-1] = metaArr[i]
}
// Inconsistent meta info is with in the limit of
// expected quorum, proceed with EcIndex based
// disk order.
if inconsistent < fi.Erasure.ParityBlocks {
return shuffledDisks, shuffledPartsMetadata
}
// fall back to original distribution based order.
return shuffleDisksAndPartsMetadata(disks, metaArr, fi)
}
// Return shuffled partsMetadata depending on fi.Distribution.
// additional validation is attempted and invalid metadata is
// automatically skipped only when fi.ModTime is non-zero
// indicating that this is called during read-phase
func shuffleDisksAndPartsMetadata(disks []StorageAPI, partsMetadata []FileInfo, fi FileInfo) (shuffledDisks []StorageAPI, shuffledPartsMetadata []FileInfo) {
shuffledDisks = make([]StorageAPI, len(disks))
shuffledPartsMetadata = make([]FileInfo, len(partsMetadata))
distribution := fi.Erasure.Distribution
init := fi.ModTime.IsZero()
// Shuffle slice xl metadata for expected distribution.
for index := range partsMetadata {
if disks[index] == nil {
continue
}
if !init && !partsMetadata[index].IsValid() {
// Check for parts metadata validity for only
// fi.ModTime is not empty - ModTime is always set,
// if object was ever written previously.
continue
}
if !init && len(fi.Data) != len(partsMetadata[index].Data) {
// Check for length of data parts only when
// fi.ModTime is not empty - ModTime is always set,
// if object was ever written previously.
continue
}
blockIndex := distribution[index]
shuffledPartsMetadata[blockIndex-1] = partsMetadata[index]
shuffledDisks[blockIndex-1] = disks[index]
}
return shuffledDisks, shuffledPartsMetadata
}
// Return shuffled partsMetadata depending on distribution.
func shufflePartsMetadata(partsMetadata []FileInfo, distribution []int) (shuffledPartsMetadata []FileInfo) {
if distribution == nil {
return partsMetadata
}
shuffledPartsMetadata = make([]FileInfo, len(partsMetadata))
// Shuffle slice xl metadata for expected distribution.
for index := range partsMetadata {
blockIndex := distribution[index]
shuffledPartsMetadata[blockIndex-1] = partsMetadata[index]
}
return shuffledPartsMetadata
}
// shuffleDisks - shuffle input disks slice depending on the
// erasure distribution. Return shuffled slice of disks with
// their expected distribution.
func shuffleDisks(disks []StorageAPI, distribution []int) (shuffledDisks []StorageAPI) {
if distribution == nil {
return disks
}
shuffledDisks = make([]StorageAPI, len(disks))
// Shuffle disks for expected distribution.
for index := range disks {
blockIndex := distribution[index]
shuffledDisks[blockIndex-1] = disks[index]
}
return shuffledDisks
}
// evalDisks - returns a new slice of disks where nil is set if
// the corresponding error in errs slice is not nil
func evalDisks(disks []StorageAPI, errs []error) []StorageAPI {
if len(errs) != len(disks) {
logger.LogIf(GlobalContext, errors.New("unexpected disks/errors slice length"))
return nil
}
newDisks := make([]StorageAPI, len(disks))
for index := range errs {
if errs[index] == nil {
newDisks[index] = disks[index]
} else {
newDisks[index] = nil
}
}
return newDisks
}
// Errors specifically generated by calculatePartSizeFromIdx function.
var (
errPartSizeZero = errors.New("Part size cannot be zero")
errPartSizeIndex = errors.New("Part index cannot be smaller than 1")
)
// calculatePartSizeFromIdx calculates the part size according to input index.
// returns error if totalSize is -1, partSize is 0, partIndex is 0.
func calculatePartSizeFromIdx(ctx context.Context, totalSize int64, partSize int64, partIndex int) (currPartSize int64, err error) {
if totalSize < -1 {
logger.LogIf(ctx, errInvalidArgument)
return 0, errInvalidArgument
}
if partSize == 0 {
logger.LogIf(ctx, errPartSizeZero)
return 0, errPartSizeZero
}
if partIndex < 1 {
logger.LogIf(ctx, errPartSizeIndex)
return 0, errPartSizeIndex
}
if totalSize == -1 {
return -1, nil
}
if totalSize > 0 {
// Compute the total count of parts
partsCount := totalSize/partSize + 1
// Return the part's size
switch {
case int64(partIndex) < partsCount:
currPartSize = partSize
case int64(partIndex) == partsCount:
// Size of last part
currPartSize = totalSize % partSize
default:
currPartSize = 0
}
}
return currPartSize, nil
}