1
0
mirror of https://github.com/minio/minio.git synced 2025-01-16 17:23:16 -05:00
minio/cmd/bucket-stats.go
Klaus Post f1302c40fe
Fix uninitialized replication stats ()
Services are unfrozen before `initBackgroundReplication` is finished. This means that 
the globalReplicationStats write is racy. Switch to an atomic pointer.

Provide the `ReplicationPool` with the stats, so it doesn't have to be grabbed 
from the atomic pointer on every use.

All other loads and checks are nil, and calls return empty values when stats 
still haven't been initialized.
2024-08-15 05:04:40 -07:00

429 lines
13 KiB
Go

// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package cmd
import (
"fmt"
"math"
"sync/atomic"
"time"
"github.com/minio/madmin-go/v3"
)
//go:generate msgp -file $GOFILE
// ReplicationLatency holds information of bucket operations latency, such us uploads
type ReplicationLatency struct {
// Single & Multipart PUTs latency
UploadHistogram LastMinuteHistogram
}
// Merge two replication latency into a new one
func (rl ReplicationLatency) merge(other ReplicationLatency) (newReplLatency ReplicationLatency) {
newReplLatency.UploadHistogram = rl.UploadHistogram.Merge(other.UploadHistogram)
return
}
// Get upload latency of each object size range
func (rl ReplicationLatency) getUploadLatency() (ret map[string]uint64) {
ret = make(map[string]uint64)
avg := rl.UploadHistogram.GetAvgData()
for k, v := range avg {
// Convert nanoseconds to milliseconds
ret[sizeTagToString(k)] = uint64(v.avg() / time.Millisecond)
}
return
}
// Update replication upload latency with a new value
func (rl *ReplicationLatency) update(size int64, duration time.Duration) {
rl.UploadHistogram.Add(size, duration)
}
// ReplicationLastMinute has last minute replication counters
type ReplicationLastMinute struct {
LastMinute lastMinuteLatency
}
func (rl ReplicationLastMinute) merge(other ReplicationLastMinute) (nl ReplicationLastMinute) {
nl = ReplicationLastMinute{rl.LastMinute.merge(other.LastMinute)}
return
}
func (rl *ReplicationLastMinute) addsize(n int64) {
t := time.Now().Unix()
rl.LastMinute.addAll(t-1, AccElem{Total: t - 1, Size: n, N: 1})
}
func (rl *ReplicationLastMinute) String() string {
t := rl.LastMinute.getTotal()
return fmt.Sprintf("ReplicationLastMinute sz= %d, n=%d , dur=%d", t.Size, t.N, t.Total)
}
func (rl *ReplicationLastMinute) getTotal() AccElem {
return rl.LastMinute.getTotal()
}
// ReplicationLastHour keeps track of replication counts over the last hour
type ReplicationLastHour struct {
Totals [60]AccElem
LastMin int64
}
// Merge data of two ReplicationLastHour structure
func (l ReplicationLastHour) merge(o ReplicationLastHour) (merged ReplicationLastHour) {
if l.LastMin > o.LastMin {
o.forwardTo(l.LastMin)
merged.LastMin = l.LastMin
} else {
l.forwardTo(o.LastMin)
merged.LastMin = o.LastMin
}
for i := range merged.Totals {
merged.Totals[i] = AccElem{
Total: l.Totals[i].Total + o.Totals[i].Total,
N: l.Totals[i].N + o.Totals[i].N,
Size: l.Totals[i].Size + o.Totals[i].Size,
}
}
return merged
}
// Add a new duration data
func (l *ReplicationLastHour) addsize(sz int64) {
min := time.Now().Unix() / 60
l.forwardTo(min)
winIdx := min % 60
l.Totals[winIdx].merge(AccElem{Total: min, Size: sz, N: 1})
l.LastMin = min
}
// Merge all recorded counts of last hour into one
func (l *ReplicationLastHour) getTotal() AccElem {
var res AccElem
min := time.Now().Unix() / 60
l.forwardTo(min)
for _, elem := range l.Totals[:] {
res.merge(elem)
}
return res
}
// forwardTo time t, clearing any entries in between.
func (l *ReplicationLastHour) forwardTo(t int64) {
if l.LastMin >= t {
return
}
if t-l.LastMin >= 60 {
l.Totals = [60]AccElem{}
return
}
for l.LastMin != t {
// Clear next element.
idx := (l.LastMin + 1) % 60
l.Totals[idx] = AccElem{}
l.LastMin++
}
}
// BucketStatsMap captures bucket statistics for all buckets
type BucketStatsMap struct {
Stats map[string]BucketStats
Timestamp time.Time
}
// BucketStats bucket statistics
type BucketStats struct {
Uptime int64 `json:"uptime"`
ReplicationStats BucketReplicationStats `json:"currStats"` // current replication stats since cluster startup
QueueStats ReplicationQueueStats `json:"queueStats"` // replication queue stats
ProxyStats ProxyMetric `json:"proxyStats"`
}
// BucketReplicationStats represents inline replication statistics
// such as pending, failed and completed bytes in total for a bucket
type BucketReplicationStats struct {
Stats map[string]*BucketReplicationStat `json:",omitempty"`
// Completed size in bytes
ReplicatedSize int64 `json:"completedReplicationSize"`
// Total Replica size in bytes
ReplicaSize int64 `json:"replicaSize"`
// Total failed operations including metadata updates for various time frames
Failed madmin.TimedErrStats `json:"failed"`
// Total number of completed operations
ReplicatedCount int64 `json:"replicationCount"`
// Total number of replica received
ReplicaCount int64 `json:"replicaCount"`
// in Queue stats for bucket - from qCache
QStat InQueueMetric `json:"queued"`
// Deprecated fields
// Pending size in bytes
PendingSize int64 `json:"pendingReplicationSize"`
// Failed size in bytes
FailedSize int64 `json:"failedReplicationSize"`
// Total number of pending operations including metadata updates
PendingCount int64 `json:"pendingReplicationCount"`
// Total number of failed operations including metadata updates
FailedCount int64 `json:"failedReplicationCount"`
}
func newBucketReplicationStats() *BucketReplicationStats {
return &BucketReplicationStats{
Stats: make(map[string]*BucketReplicationStat),
}
}
// Empty returns true if there are no target stats
func (brs *BucketReplicationStats) Empty() bool {
return len(brs.Stats) == 0 && brs.ReplicaSize == 0
}
// Clone creates a new BucketReplicationStats copy
func (brs BucketReplicationStats) Clone() (c BucketReplicationStats) {
// This is called only by replicationStats cache and already holds a
// read lock before calling Clone()
c = brs
// We need to copy the map, so we do not reference the one in `brs`.
c.Stats = make(map[string]*BucketReplicationStat, len(brs.Stats))
for arn, st := range brs.Stats {
// make a copy of `*st`
s := BucketReplicationStat{
ReplicatedSize: st.ReplicatedSize,
ReplicaSize: st.ReplicaSize,
Latency: st.Latency,
BandWidthLimitInBytesPerSecond: st.BandWidthLimitInBytesPerSecond,
CurrentBandwidthInBytesPerSecond: st.CurrentBandwidthInBytesPerSecond,
XferRateLrg: st.XferRateLrg.Clone(),
XferRateSml: st.XferRateSml.Clone(),
ReplicatedCount: st.ReplicatedCount,
Failed: st.Failed,
FailStats: st.FailStats,
}
if s.Failed.ErrCounts == nil {
s.Failed.ErrCounts = make(map[string]int)
for k, v := range st.Failed.ErrCounts {
s.Failed.ErrCounts[k] = v
}
}
c.Stats[arn] = &s
}
return c
}
// BucketReplicationStat represents inline replication statistics
// such as pending, failed and completed bytes in total for a bucket
// remote target
type BucketReplicationStat struct {
// Pending size in bytes
// PendingSize int64 `json:"pendingReplicationSize"`
// Completed size in bytes
ReplicatedSize int64 `json:"completedReplicationSize"`
// Total Replica size in bytes
ReplicaSize int64 `json:"replicaSize"`
// Collect stats for failures
FailStats RTimedMetrics `json:"-"`
// Total number of failed operations including metadata updates in the last minute
Failed madmin.TimedErrStats `json:"failed"`
// Total number of completed operations
ReplicatedCount int64 `json:"replicationCount"`
// Replication latency information
Latency ReplicationLatency `json:"replicationLatency"`
// bandwidth limit for target
BandWidthLimitInBytesPerSecond int64 `json:"limitInBits"`
// current bandwidth reported
CurrentBandwidthInBytesPerSecond float64 `json:"currentBandwidth"`
// transfer rate for large uploads
XferRateLrg *XferStats `json:"-" msg:"lt"`
// transfer rate for small uploads
XferRateSml *XferStats `json:"-" msg:"st"`
// Deprecated fields
// Pending size in bytes
PendingSize int64 `json:"pendingReplicationSize"`
// Failed size in bytes
FailedSize int64 `json:"failedReplicationSize"`
// Total number of pending operations including metadata updates
PendingCount int64 `json:"pendingReplicationCount"`
// Total number of failed operations including metadata updates
FailedCount int64 `json:"failedReplicationCount"`
}
func (bs *BucketReplicationStat) hasReplicationUsage() bool {
return bs.FailStats.SinceUptime.Count > 0 ||
bs.ReplicatedSize > 0 ||
bs.ReplicaSize > 0
}
func (bs *BucketReplicationStat) updateXferRate(sz int64, duration time.Duration) {
if sz > minLargeObjSize {
bs.XferRateLrg.addSize(sz, duration)
} else {
bs.XferRateSml.addSize(sz, duration)
}
}
// RMetricName - name of replication metric
type RMetricName string
const (
// Large - objects larger than 128MiB
Large RMetricName = "Large"
// Small - objects smaller than 128MiB
Small RMetricName = "Small"
// Total - metric pertaining to totals
Total RMetricName = "Total"
)
// ReplQNodeStats holds queue stats for replication per node
type ReplQNodeStats struct {
NodeName string `json:"nodeName"`
Uptime int64 `json:"uptime"`
ActiveWorkers ActiveWorkerStat `json:"activeWorkers"`
XferStats map[RMetricName]XferStats `json:"transferSummary"`
TgtXferStats map[string]map[RMetricName]XferStats `json:"tgtTransferStats"`
QStats InQueueMetric `json:"queueStats"`
MRFStats ReplicationMRFStats `json:"mrfStats"`
}
// getNodeQueueStats returns replication operational stats at the node level
func (r *ReplicationStats) getNodeQueueStats(bucket string) (qs ReplQNodeStats) {
qs.NodeName = globalLocalNodeName
qs.Uptime = UTCNow().Unix() - globalBootTime.Unix()
qs.ActiveWorkers = globalReplicationStats.Load().ActiveWorkers()
qs.XferStats = make(map[RMetricName]XferStats)
qs.QStats = r.qCache.getBucketStats(bucket)
qs.TgtXferStats = make(map[string]map[RMetricName]XferStats)
qs.MRFStats = ReplicationMRFStats{
LastFailedCount: atomic.LoadUint64(&r.mrfStats.LastFailedCount),
}
r.RLock()
defer r.RUnlock()
brs, ok := r.Cache[bucket]
if !ok {
return qs
}
for arn := range brs.Stats {
qs.TgtXferStats[arn] = make(map[RMetricName]XferStats)
}
count := 0
var totPeak float64
// calculate large, small transfers and total transfer rates per replication target at bucket level
for arn, v := range brs.Stats {
lcurrTgt := v.XferRateLrg.curr()
scurrTgt := v.XferRateSml.curr()
totPeak = math.Max(math.Max(v.XferRateLrg.Peak, v.XferRateSml.Peak), totPeak)
totPeak = math.Max(math.Max(lcurrTgt, scurrTgt), totPeak)
tcount := 0
if v.XferRateLrg.Peak > 0 {
tcount++
}
if v.XferRateSml.Peak > 0 {
tcount++
}
qs.TgtXferStats[arn][Large] = XferStats{
Avg: v.XferRateLrg.Avg,
Curr: lcurrTgt,
Peak: math.Max(v.XferRateLrg.Peak, lcurrTgt),
}
qs.TgtXferStats[arn][Small] = XferStats{
Avg: v.XferRateSml.Avg,
Curr: scurrTgt,
Peak: math.Max(v.XferRateSml.Peak, scurrTgt),
}
if tcount > 0 {
qs.TgtXferStats[arn][Total] = XferStats{
Avg: (v.XferRateLrg.Avg + v.XferRateSml.Avg) / float64(tcount),
Curr: (scurrTgt + lcurrTgt) / float64(tcount),
Peak: totPeak,
}
}
}
// calculate large, small and total transfer rates for a minio node
var lavg, lcurr, lpeak, savg, scurr, speak, totpeak float64
for _, v := range qs.TgtXferStats {
tot := v[Total]
lavg += v[Large].Avg
lcurr += v[Large].Curr
savg += v[Small].Avg
scurr += v[Small].Curr
totpeak = math.Max(math.Max(tot.Peak, totpeak), tot.Curr)
lpeak = math.Max(math.Max(v[Large].Peak, lpeak), v[Large].Curr)
speak = math.Max(math.Max(v[Small].Peak, speak), v[Small].Curr)
if lpeak > 0 || speak > 0 {
count++
}
}
if count > 0 {
lrg := XferStats{
Avg: lavg / float64(count),
Curr: lcurr / float64(count),
Peak: lpeak,
}
sml := XferStats{
Avg: savg / float64(count),
Curr: scurr / float64(count),
Peak: speak,
}
qs.XferStats[Large] = lrg
qs.XferStats[Small] = sml
qs.XferStats[Total] = XferStats{
Avg: (savg + lavg) / float64(count),
Curr: (lcurr + scurr) / float64(count),
Peak: totpeak,
}
}
return qs
}
// populate queue totals for node and active workers in use for metrics
func (r *ReplicationStats) getNodeQueueStatsSummary() (qs ReplQNodeStats) {
qs.NodeName = globalLocalNodeName
qs.Uptime = UTCNow().Unix() - globalBootTime.Unix()
qs.ActiveWorkers = globalReplicationStats.Load().ActiveWorkers()
qs.XferStats = make(map[RMetricName]XferStats)
qs.QStats = r.qCache.getSiteStats()
qs.MRFStats = ReplicationMRFStats{
LastFailedCount: atomic.LoadUint64(&r.mrfStats.LastFailedCount),
}
r.RLock()
defer r.RUnlock()
tx := newXferStats()
for _, brs := range r.Cache {
for _, v := range brs.Stats {
tx := tx.merge(*v.XferRateLrg)
tx = tx.merge(*v.XferRateSml)
}
}
qs.XferStats[Total] = *tx
return qs
}
// ReplicationQueueStats holds overall queue stats for replication
type ReplicationQueueStats struct {
Nodes []ReplQNodeStats `json:"nodes"`
Uptime int64 `json:"uptime"`
}