mirror of
https://github.com/minio/minio.git
synced 2025-01-08 05:23:24 -05:00
dd2542e96c
Original work here, #18474, refixed and updated.
1161 lines
36 KiB
Go
1161 lines
36 KiB
Go
// Copyright (c) 2015-2023 MinIO, Inc.
|
|
//
|
|
// This file is part of MinIO Object Storage stack
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package cmd
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"context"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"crypto/subtle"
|
|
"encoding/binary"
|
|
"encoding/hex"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net/http"
|
|
"path"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/minio/kes-go"
|
|
"github.com/minio/minio/internal/crypto"
|
|
"github.com/minio/minio/internal/etag"
|
|
"github.com/minio/minio/internal/fips"
|
|
"github.com/minio/minio/internal/hash"
|
|
"github.com/minio/minio/internal/hash/sha256"
|
|
xhttp "github.com/minio/minio/internal/http"
|
|
"github.com/minio/minio/internal/kms"
|
|
"github.com/minio/minio/internal/logger"
|
|
"github.com/minio/sio"
|
|
)
|
|
|
|
var (
|
|
// AWS errors for invalid SSE-C requests.
|
|
errEncryptedObject = errors.New("The object was stored using a form of SSE")
|
|
errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied
|
|
errKMSNotConfigured = errors.New("KMS not configured for a server side encrypted objects")
|
|
errKMSKeyNotFound = errors.New("Unknown KMS key ID")
|
|
errKMSDefaultKeyAlreadyConfigured = errors.New("A default encryption already exists on KMS")
|
|
// Additional MinIO errors for SSE-C requests.
|
|
errObjectTampered = errors.New("The requested object was modified and may be compromised")
|
|
// error returned when invalid encryption parameters are specified
|
|
errInvalidEncryptionParameters = errors.New("The encryption parameters are not applicable to this object")
|
|
errInvalidEncryptionParametersSSEC = errors.New("SSE-C encryption parameters are not supported on this bucket")
|
|
)
|
|
|
|
const (
|
|
// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
|
|
// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
|
|
SSECustomerKeySize = 32
|
|
|
|
// SSEIVSize is the size of the IV data
|
|
SSEIVSize = 32 // 32 bytes
|
|
|
|
// SSEDAREPackageBlockSize - SSE dare package block size.
|
|
SSEDAREPackageBlockSize = 64 * 1024 // 64KiB bytes
|
|
|
|
// SSEDAREPackageMetaSize - SSE dare package meta padding bytes.
|
|
SSEDAREPackageMetaSize = 32 // 32 bytes
|
|
|
|
)
|
|
|
|
// KMSKeyID returns in AWS compatible KMS KeyID() format.
|
|
func (o *ObjectInfo) KMSKeyID() string { return kmsKeyIDFromMetadata(o.UserDefined) }
|
|
|
|
// KMSKeyID returns in AWS compatible KMS KeyID() format.
|
|
func (o *MultipartInfo) KMSKeyID() string { return kmsKeyIDFromMetadata(o.UserDefined) }
|
|
|
|
// kmsKeyIDFromMetadata returns any AWS S3 KMS key ID in the
|
|
// metadata, if any. It returns an empty ID if no key ID is
|
|
// present.
|
|
func kmsKeyIDFromMetadata(metadata map[string]string) string {
|
|
const ARNPrefix = crypto.ARNPrefix
|
|
if len(metadata) == 0 {
|
|
return ""
|
|
}
|
|
kmsID, ok := metadata[crypto.MetaKeyID]
|
|
if !ok {
|
|
return ""
|
|
}
|
|
if strings.HasPrefix(kmsID, ARNPrefix) {
|
|
return kmsID
|
|
}
|
|
return ARNPrefix + kmsID
|
|
}
|
|
|
|
// DecryptETags decryptes the ETag of all ObjectInfos using the KMS.
|
|
//
|
|
// It adjusts the size of all encrypted objects since encrypted
|
|
// objects are slightly larger due to encryption overhead.
|
|
// Further, it decrypts all single-part SSE-S3 encrypted objects
|
|
// and formats ETags of SSE-C / SSE-KMS encrypted objects to
|
|
// be AWS S3 compliant.
|
|
//
|
|
// DecryptETags uses a KMS bulk decryption API, if available, which
|
|
// is more efficient than decrypting ETags sequentually.
|
|
func DecryptETags(ctx context.Context, k kms.KMS, objects []ObjectInfo) error {
|
|
const BatchSize = 250 // We process the objects in batches - 250 is a reasonable default.
|
|
var (
|
|
metadata = make([]map[string]string, 0, BatchSize)
|
|
buckets = make([]string, 0, BatchSize)
|
|
names = make([]string, 0, BatchSize)
|
|
)
|
|
for len(objects) > 0 {
|
|
N := BatchSize
|
|
if len(objects) < BatchSize {
|
|
N = len(objects)
|
|
}
|
|
batch := objects[:N]
|
|
|
|
// We have to decrypt only ETags of SSE-S3 single-part
|
|
// objects.
|
|
// Therefore, we remember which objects (there index)
|
|
// in the current batch are single-part SSE-S3 objects.
|
|
metadata = metadata[:0:N]
|
|
buckets = buckets[:0:N]
|
|
names = names[:0:N]
|
|
SSES3SinglePartObjects := make(map[int]bool)
|
|
for i, object := range batch {
|
|
if kind, ok := crypto.IsEncrypted(object.UserDefined); ok && kind == crypto.S3 && !crypto.IsMultiPart(object.UserDefined) {
|
|
SSES3SinglePartObjects[i] = true
|
|
|
|
metadata = append(metadata, object.UserDefined)
|
|
buckets = append(buckets, object.Bucket)
|
|
names = append(names, object.Name)
|
|
}
|
|
}
|
|
|
|
// If there are no SSE-S3 single-part objects
|
|
// we can skip the decryption process. However,
|
|
// we still have to adjust the size and ETag
|
|
// of SSE-C and SSE-KMS objects.
|
|
if len(SSES3SinglePartObjects) == 0 {
|
|
for i := range batch {
|
|
size, err := batch[i].GetActualSize()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
batch[i].Size = size
|
|
|
|
if _, ok := crypto.IsEncrypted(batch[i].UserDefined); ok {
|
|
ETag, err := etag.Parse(batch[i].ETag)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
batch[i].ETag = ETag.Format().String()
|
|
}
|
|
}
|
|
objects = objects[N:]
|
|
continue
|
|
}
|
|
|
|
// There is at least one SSE-S3 single-part object.
|
|
// For all SSE-S3 single-part objects we have to
|
|
// fetch their decryption keys. We do this using
|
|
// a Bulk-Decryption API call, if available.
|
|
keys, err := crypto.S3.UnsealObjectKeys(ctx, k, metadata, buckets, names)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Now, we have to decrypt the ETags of SSE-S3 single-part
|
|
// objects and adjust the size and ETags of all encrypted
|
|
// objects.
|
|
for i := range batch {
|
|
size, err := batch[i].GetActualSize()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
batch[i].Size = size
|
|
|
|
if _, ok := crypto.IsEncrypted(batch[i].UserDefined); ok {
|
|
ETag, err := etag.Parse(batch[i].ETag)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if SSES3SinglePartObjects[i] && ETag.IsEncrypted() {
|
|
ETag, err = etag.Decrypt(keys[0][:], ETag)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
keys = keys[1:]
|
|
}
|
|
batch[i].ETag = ETag.Format().String()
|
|
}
|
|
}
|
|
objects = objects[N:]
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// isMultipart returns true if the current object is
|
|
// uploaded by the user using multipart mechanism:
|
|
// initiate new multipart, upload part, complete upload
|
|
func (o *ObjectInfo) isMultipart() bool {
|
|
_, encrypted := crypto.IsEncrypted(o.UserDefined)
|
|
if encrypted {
|
|
if !crypto.IsMultiPart(o.UserDefined) {
|
|
return false
|
|
}
|
|
for _, part := range o.Parts {
|
|
_, err := sio.DecryptedSize(uint64(part.Size))
|
|
if err != nil {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
|
|
// Further check if this object is uploaded using multipart mechanism
|
|
// by the user and it is not about Erasure internally splitting the
|
|
// object into parts in PutObject()
|
|
return len(o.ETag) != 32
|
|
}
|
|
|
|
// ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request.
|
|
// It returns the client provided key on success.
|
|
func ParseSSECopyCustomerRequest(h http.Header, metadata map[string]string) (key []byte, err error) {
|
|
if crypto.S3.IsEncrypted(metadata) && crypto.SSECopy.IsRequested(h) {
|
|
return nil, crypto.ErrIncompatibleEncryptionMethod
|
|
}
|
|
k, err := crypto.SSECopy.ParseHTTP(h)
|
|
return k[:], err
|
|
}
|
|
|
|
// ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
|
|
// It returns the client provided key on success.
|
|
func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
|
|
return ParseSSECustomerHeader(r.Header)
|
|
}
|
|
|
|
// ParseSSECustomerHeader parses the SSE-C header fields and returns
|
|
// the client provided key on success.
|
|
func ParseSSECustomerHeader(header http.Header) (key []byte, err error) {
|
|
if crypto.S3.IsRequested(header) && crypto.SSEC.IsRequested(header) {
|
|
return key, crypto.ErrIncompatibleEncryptionMethod
|
|
}
|
|
|
|
k, err := crypto.SSEC.ParseHTTP(header)
|
|
return k[:], err
|
|
}
|
|
|
|
// This function rotates old to new key.
|
|
func rotateKey(ctx context.Context, oldKey []byte, newKeyID string, newKey []byte, bucket, object string, metadata map[string]string, cryptoCtx kms.Context) error {
|
|
kind, _ := crypto.IsEncrypted(metadata)
|
|
switch kind {
|
|
case crypto.S3:
|
|
if GlobalKMS == nil {
|
|
return errKMSNotConfigured
|
|
}
|
|
keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
oldKey, err := GlobalKMS.DecryptKey(keyID, kmsKey, kms.Context{bucket: path.Join(bucket, object)})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var objectKey crypto.ObjectKey
|
|
if err = objectKey.Unseal(oldKey, sealedKey, crypto.S3.String(), bucket, object); err != nil {
|
|
return err
|
|
}
|
|
|
|
newKey, err := GlobalKMS.GenerateKey(ctx, "", kms.Context{bucket: path.Join(bucket, object)})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
sealedKey = objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
|
|
crypto.S3.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey)
|
|
return nil
|
|
case crypto.S3KMS:
|
|
if GlobalKMS == nil {
|
|
return errKMSNotConfigured
|
|
}
|
|
objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if len(cryptoCtx) == 0 {
|
|
_, _, _, cryptoCtx, err = crypto.S3KMS.ParseMetadata(metadata)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// If the context does not contain the bucket key
|
|
// we must add it for key generation. However,
|
|
// the context must be stored exactly like the
|
|
// client provided it. Therefore, we create a copy
|
|
// of the client provided context and add the bucket
|
|
// key, if not present.
|
|
kmsCtx := kms.Context{}
|
|
for k, v := range cryptoCtx {
|
|
kmsCtx[k] = v
|
|
}
|
|
if _, ok := kmsCtx[bucket]; !ok {
|
|
kmsCtx[bucket] = path.Join(bucket, object)
|
|
}
|
|
newKey, err := GlobalKMS.GenerateKey(ctx, newKeyID, kmsCtx)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
sealedKey := objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object)
|
|
crypto.S3KMS.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey, cryptoCtx)
|
|
return nil
|
|
case crypto.SSEC:
|
|
sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var objectKey crypto.ObjectKey
|
|
if err = objectKey.Unseal(oldKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
|
|
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 {
|
|
return errInvalidSSEParameters // AWS returns special error for equal but invalid keys.
|
|
}
|
|
return crypto.ErrInvalidCustomerKey // To provide strict AWS S3 compatibility we return: access denied.
|
|
|
|
}
|
|
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && sealedKey.Algorithm == crypto.SealAlgorithm {
|
|
return nil // don't rotate on equal keys if seal algorithm is latest
|
|
}
|
|
sealedKey = objectKey.Seal(newKey, sealedKey.IV, crypto.SSEC.String(), bucket, object)
|
|
crypto.SSEC.CreateMetadata(metadata, sealedKey)
|
|
return nil
|
|
default:
|
|
return errObjectTampered
|
|
}
|
|
}
|
|
|
|
func newEncryptMetadata(ctx context.Context, kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, cryptoCtx kms.Context) (crypto.ObjectKey, error) {
|
|
var sealedKey crypto.SealedKey
|
|
switch kind {
|
|
case crypto.S3:
|
|
if GlobalKMS == nil {
|
|
return crypto.ObjectKey{}, errKMSNotConfigured
|
|
}
|
|
key, err := GlobalKMS.GenerateKey(ctx, "", kms.Context{bucket: path.Join(bucket, object)})
|
|
if err != nil {
|
|
return crypto.ObjectKey{}, err
|
|
}
|
|
|
|
objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader)
|
|
sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
|
|
crypto.S3.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey)
|
|
return objectKey, nil
|
|
case crypto.S3KMS:
|
|
if GlobalKMS == nil {
|
|
return crypto.ObjectKey{}, errKMSNotConfigured
|
|
}
|
|
|
|
// If the context does not contain the bucket key
|
|
// we must add it for key generation. However,
|
|
// the context must be stored exactly like the
|
|
// client provided it. Therefore, we create a copy
|
|
// of the client provided context and add the bucket
|
|
// key, if not present.
|
|
kmsCtx := kms.Context{}
|
|
for k, v := range cryptoCtx {
|
|
kmsCtx[k] = v
|
|
}
|
|
if _, ok := kmsCtx[bucket]; !ok {
|
|
kmsCtx[bucket] = path.Join(bucket, object)
|
|
}
|
|
key, err := GlobalKMS.GenerateKey(ctx, keyID, kmsCtx)
|
|
if err != nil {
|
|
if errors.Is(err, kes.ErrKeyNotFound) {
|
|
return crypto.ObjectKey{}, errKMSKeyNotFound
|
|
}
|
|
return crypto.ObjectKey{}, err
|
|
}
|
|
|
|
objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader)
|
|
sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object)
|
|
crypto.S3KMS.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey, cryptoCtx)
|
|
return objectKey, nil
|
|
case crypto.SSEC:
|
|
objectKey := crypto.GenerateKey(key, rand.Reader)
|
|
sealedKey = objectKey.Seal(key, crypto.GenerateIV(rand.Reader), crypto.SSEC.String(), bucket, object)
|
|
crypto.SSEC.CreateMetadata(metadata, sealedKey)
|
|
return objectKey, nil
|
|
default:
|
|
return crypto.ObjectKey{}, fmt.Errorf("encryption type '%v' not supported", kind)
|
|
}
|
|
}
|
|
|
|
func newEncryptReader(ctx context.Context, content io.Reader, kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, cryptoCtx kms.Context) (io.Reader, crypto.ObjectKey, error) {
|
|
objectEncryptionKey, err := newEncryptMetadata(ctx, kind, keyID, key, bucket, object, metadata, cryptoCtx)
|
|
if err != nil {
|
|
return nil, crypto.ObjectKey{}, err
|
|
}
|
|
|
|
reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey[:], MinVersion: sio.Version20, CipherSuites: fips.DARECiphers()})
|
|
if err != nil {
|
|
return nil, crypto.ObjectKey{}, crypto.ErrInvalidCustomerKey
|
|
}
|
|
|
|
return reader, objectEncryptionKey, nil
|
|
}
|
|
|
|
// set new encryption metadata from http request headers for SSE-C and generated key from KMS in the case of
|
|
// SSE-S3
|
|
func setEncryptionMetadata(r *http.Request, bucket, object string, metadata map[string]string) (err error) {
|
|
var (
|
|
key []byte
|
|
keyID string
|
|
kmsCtx kms.Context
|
|
)
|
|
kind, _ := crypto.IsRequested(r.Header)
|
|
switch kind {
|
|
case crypto.SSEC:
|
|
key, err = ParseSSECustomerRequest(r)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
case crypto.S3KMS:
|
|
keyID, kmsCtx, err = crypto.S3KMS.ParseHTTP(r.Header)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
_, err = newEncryptMetadata(r.Context(), kind, keyID, key, bucket, object, metadata, kmsCtx)
|
|
return
|
|
}
|
|
|
|
// EncryptRequest takes the client provided content and encrypts the data
|
|
// with the client provided key. It also marks the object as client-side-encrypted
|
|
// and sets the correct headers.
|
|
func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, crypto.ObjectKey, error) {
|
|
if r.ContentLength > encryptBufferThreshold {
|
|
// The encryption reads in blocks of 64KB.
|
|
// We add a buffer on bigger files to reduce the number of syscalls upstream.
|
|
content = bufio.NewReaderSize(content, encryptBufferSize)
|
|
}
|
|
|
|
var (
|
|
key []byte
|
|
keyID string
|
|
ctx kms.Context
|
|
err error
|
|
)
|
|
kind, _ := crypto.IsRequested(r.Header)
|
|
if kind == crypto.SSEC {
|
|
key, err = ParseSSECustomerRequest(r)
|
|
if err != nil {
|
|
return nil, crypto.ObjectKey{}, err
|
|
}
|
|
}
|
|
if kind == crypto.S3KMS {
|
|
keyID, ctx, err = crypto.S3KMS.ParseHTTP(r.Header)
|
|
if err != nil {
|
|
return nil, crypto.ObjectKey{}, err
|
|
}
|
|
}
|
|
return newEncryptReader(r.Context(), content, kind, keyID, key, bucket, object, metadata, ctx)
|
|
}
|
|
|
|
func decryptObjectMeta(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
|
|
switch kind, _ := crypto.IsEncrypted(metadata); kind {
|
|
case crypto.S3:
|
|
KMS := GlobalKMS
|
|
if KMS == nil {
|
|
return nil, errKMSNotConfigured
|
|
}
|
|
objectKey, err := crypto.S3.UnsealObjectKey(KMS, metadata, bucket, object)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return objectKey[:], nil
|
|
case crypto.S3KMS:
|
|
if GlobalKMS == nil {
|
|
return nil, errKMSNotConfigured
|
|
}
|
|
objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return objectKey[:], nil
|
|
case crypto.SSEC:
|
|
sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var objectKey crypto.ObjectKey
|
|
if err = objectKey.Unseal(key, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
|
|
return nil, err
|
|
}
|
|
return objectKey[:], nil
|
|
default:
|
|
return nil, errObjectTampered
|
|
}
|
|
}
|
|
|
|
// Adding support for reader based interface
|
|
|
|
// DecryptRequestWithSequenceNumberR - same as
|
|
// DecryptRequestWithSequenceNumber but with a reader
|
|
func DecryptRequestWithSequenceNumberR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
|
|
if crypto.SSEC.IsEncrypted(metadata) {
|
|
key, err := ParseSSECustomerHeader(h)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
|
|
}
|
|
return newDecryptReader(client, nil, bucket, object, seqNumber, metadata)
|
|
}
|
|
|
|
// DecryptCopyRequestR - same as DecryptCopyRequest, but with a
|
|
// Reader
|
|
func DecryptCopyRequestR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
|
|
var (
|
|
key []byte
|
|
err error
|
|
)
|
|
if crypto.SSECopy.IsRequested(h) {
|
|
key, err = ParseSSECopyCustomerRequest(h, metadata)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
|
|
}
|
|
|
|
func newDecryptReader(client io.Reader, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
|
|
objectEncryptionKey, err := decryptObjectMeta(key, bucket, object, metadata)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return newDecryptReaderWithObjectKey(client, objectEncryptionKey, seqNumber)
|
|
}
|
|
|
|
func newDecryptReaderWithObjectKey(client io.Reader, objectEncryptionKey []byte, seqNumber uint32) (io.Reader, error) {
|
|
reader, err := sio.DecryptReader(client, sio.Config{
|
|
Key: objectEncryptionKey,
|
|
SequenceNumber: seqNumber,
|
|
CipherSuites: fips.DARECiphers(),
|
|
})
|
|
if err != nil {
|
|
return nil, crypto.ErrInvalidCustomerKey
|
|
}
|
|
return reader, nil
|
|
}
|
|
|
|
// DecryptBlocksRequestR - same as DecryptBlocksRequest but with a
|
|
// reader
|
|
func DecryptBlocksRequestR(inputReader io.Reader, h http.Header, seqNumber uint32, partStart int, oi ObjectInfo, copySource bool) (io.Reader, error) {
|
|
bucket, object := oi.Bucket, oi.Name
|
|
// Single part case
|
|
if !oi.isMultipart() {
|
|
var reader io.Reader
|
|
var err error
|
|
if copySource {
|
|
reader, err = DecryptCopyRequestR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
|
|
} else {
|
|
reader, err = DecryptRequestWithSequenceNumberR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return reader, nil
|
|
}
|
|
|
|
partDecRelOffset := int64(seqNumber) * SSEDAREPackageBlockSize
|
|
partEncRelOffset := int64(seqNumber) * (SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
|
|
|
|
w := &DecryptBlocksReader{
|
|
reader: inputReader,
|
|
startSeqNum: seqNumber,
|
|
partDecRelOffset: partDecRelOffset,
|
|
partEncRelOffset: partEncRelOffset,
|
|
parts: oi.Parts,
|
|
partIndex: partStart,
|
|
header: h,
|
|
bucket: bucket,
|
|
object: object,
|
|
customerKeyHeader: h.Get(xhttp.AmzServerSideEncryptionCustomerKey),
|
|
copySource: copySource,
|
|
metadata: cloneMSS(oi.UserDefined),
|
|
}
|
|
|
|
if w.copySource {
|
|
w.customerKeyHeader = h.Get(xhttp.AmzServerSideEncryptionCopyCustomerKey)
|
|
}
|
|
|
|
if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return w, nil
|
|
}
|
|
|
|
// DecryptBlocksReader - decrypts multipart parts, while implementing
|
|
// a io.Reader compatible interface.
|
|
type DecryptBlocksReader struct {
|
|
// Source of the encrypted content that will be decrypted
|
|
reader io.Reader
|
|
// Current decrypter for the current encrypted data block
|
|
decrypter io.Reader
|
|
// Start sequence number
|
|
startSeqNum uint32
|
|
// Current part index
|
|
partIndex int
|
|
// Parts information
|
|
parts []ObjectPartInfo
|
|
header http.Header
|
|
bucket, object string
|
|
metadata map[string]string
|
|
|
|
partDecRelOffset, partEncRelOffset int64
|
|
|
|
copySource bool
|
|
// Customer Key
|
|
customerKeyHeader string
|
|
}
|
|
|
|
func (d *DecryptBlocksReader) buildDecrypter(partID int) error {
|
|
m := cloneMSS(d.metadata)
|
|
// Initialize the first decrypter; new decrypters will be
|
|
// initialized in Read() operation as needed.
|
|
var key []byte
|
|
var err error
|
|
if d.copySource {
|
|
if crypto.SSEC.IsEncrypted(d.metadata) {
|
|
d.header.Set(xhttp.AmzServerSideEncryptionCopyCustomerKey, d.customerKeyHeader)
|
|
key, err = ParseSSECopyCustomerRequest(d.header, d.metadata)
|
|
}
|
|
} else {
|
|
if crypto.SSEC.IsEncrypted(d.metadata) {
|
|
d.header.Set(xhttp.AmzServerSideEncryptionCustomerKey, d.customerKeyHeader)
|
|
key, err = ParseSSECustomerHeader(d.header)
|
|
}
|
|
}
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
objectEncryptionKey, err := decryptObjectMeta(key, d.bucket, d.object, m)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var partIDbin [4]byte
|
|
binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID
|
|
|
|
mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key
|
|
mac.Write(partIDbin[:])
|
|
partEncryptionKey := mac.Sum(nil)
|
|
|
|
// Limit the reader, so the decryptor doesn't receive bytes
|
|
// from the next part (different DARE stream)
|
|
encLenToRead := d.parts[d.partIndex].Size - d.partEncRelOffset
|
|
decrypter, err := newDecryptReaderWithObjectKey(io.LimitReader(d.reader, encLenToRead), partEncryptionKey, d.startSeqNum)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
d.decrypter = decrypter
|
|
return nil
|
|
}
|
|
|
|
func (d *DecryptBlocksReader) Read(p []byte) (int, error) {
|
|
var err error
|
|
var n1 int
|
|
decPartSize, _ := sio.DecryptedSize(uint64(d.parts[d.partIndex].Size))
|
|
unreadPartLen := int64(decPartSize) - d.partDecRelOffset
|
|
if int64(len(p)) < unreadPartLen {
|
|
n1, err = d.decrypter.Read(p)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
d.partDecRelOffset += int64(n1)
|
|
} else {
|
|
n1, err = io.ReadFull(d.decrypter, p[:unreadPartLen])
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// We should now proceed to next part, reset all
|
|
// values appropriately.
|
|
d.partEncRelOffset = 0
|
|
d.partDecRelOffset = 0
|
|
d.startSeqNum = 0
|
|
|
|
d.partIndex++
|
|
if d.partIndex == len(d.parts) {
|
|
return n1, io.EOF
|
|
}
|
|
|
|
err = d.buildDecrypter(d.parts[d.partIndex].Number)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
n1, err = d.decrypter.Read(p[n1:])
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
d.partDecRelOffset += int64(n1)
|
|
}
|
|
return len(p), nil
|
|
}
|
|
|
|
// DecryptedSize returns the size of the object after decryption in bytes.
|
|
// It returns an error if the object is not encrypted or marked as encrypted
|
|
// but has an invalid size.
|
|
func (o ObjectInfo) DecryptedSize() (int64, error) {
|
|
if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
|
|
return 0, errors.New("Cannot compute decrypted size of an unencrypted object")
|
|
}
|
|
if !o.isMultipart() {
|
|
size, err := sio.DecryptedSize(uint64(o.Size))
|
|
if err != nil {
|
|
err = errObjectTampered // assign correct error type
|
|
}
|
|
return int64(size), err
|
|
}
|
|
|
|
var size int64
|
|
for _, part := range o.Parts {
|
|
partSize, err := sio.DecryptedSize(uint64(part.Size))
|
|
if err != nil {
|
|
return 0, errObjectTampered
|
|
}
|
|
size += int64(partSize)
|
|
}
|
|
return size, nil
|
|
}
|
|
|
|
// DecryptETag decrypts the ETag that is part of given object
|
|
// with the given object encryption key.
|
|
//
|
|
// However, DecryptETag does not try to decrypt the ETag if
|
|
// it consists of a 128 bit hex value (32 hex chars) and exactly
|
|
// one '-' followed by a 32-bit number.
|
|
// This special case addresses randomly-generated ETags generated
|
|
// by the MinIO server when running in non-compat mode. These
|
|
// random ETags are not encrypt.
|
|
//
|
|
// Calling DecryptETag with a non-randomly generated ETag will
|
|
// fail.
|
|
func DecryptETag(key crypto.ObjectKey, object ObjectInfo) (string, error) {
|
|
if n := strings.Count(object.ETag, "-"); n > 0 {
|
|
if n != 1 {
|
|
return "", errObjectTampered
|
|
}
|
|
i := strings.IndexByte(object.ETag, '-')
|
|
if len(object.ETag[:i]) != 32 {
|
|
return "", errObjectTampered
|
|
}
|
|
if _, err := hex.DecodeString(object.ETag[:32]); err != nil {
|
|
return "", errObjectTampered
|
|
}
|
|
if _, err := strconv.ParseInt(object.ETag[i+1:], 10, 32); err != nil {
|
|
return "", errObjectTampered
|
|
}
|
|
return object.ETag, nil
|
|
}
|
|
|
|
etag, err := hex.DecodeString(object.ETag)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
etag, err = key.UnsealETag(etag)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
return hex.EncodeToString(etag), nil
|
|
}
|
|
|
|
// For encrypted objects, the ETag sent by client if available
|
|
// is stored in encrypted form in the backend. Decrypt the ETag
|
|
// if ETag was previously encrypted.
|
|
func getDecryptedETag(headers http.Header, objInfo ObjectInfo, copySource bool) (decryptedETag string) {
|
|
var (
|
|
key [32]byte
|
|
err error
|
|
)
|
|
// If ETag is contentMD5Sum return it as is.
|
|
if len(objInfo.ETag) == 32 {
|
|
return objInfo.ETag
|
|
}
|
|
|
|
if crypto.IsMultiPart(objInfo.UserDefined) {
|
|
return objInfo.ETag
|
|
}
|
|
|
|
if crypto.SSECopy.IsRequested(headers) {
|
|
key, err = crypto.SSECopy.ParseHTTP(headers)
|
|
if err != nil {
|
|
return objInfo.ETag
|
|
}
|
|
}
|
|
|
|
// As per AWS S3 Spec, ETag for SSE-C encrypted objects need not be MD5Sum of the data.
|
|
// Since server side copy with same source and dest just replaces the ETag, we save
|
|
// encrypted content MD5Sum as ETag for both SSE-C and SSE-KMS, we standardize the ETag
|
|
// encryption across SSE-C and SSE-KMS, and only return last 32 bytes for SSE-C
|
|
if (crypto.SSEC.IsEncrypted(objInfo.UserDefined) || crypto.S3KMS.IsEncrypted(objInfo.UserDefined)) && !copySource {
|
|
return objInfo.ETag[len(objInfo.ETag)-32:]
|
|
}
|
|
|
|
objectEncryptionKey, err := decryptObjectMeta(key[:], objInfo.Bucket, objInfo.Name, objInfo.UserDefined)
|
|
if err != nil {
|
|
return objInfo.ETag
|
|
}
|
|
return tryDecryptETag(objectEncryptionKey, objInfo.ETag, true)
|
|
}
|
|
|
|
// helper to decrypt Etag given object encryption key and encrypted ETag
|
|
func tryDecryptETag(key []byte, encryptedETag string, sses3 bool) string {
|
|
// ETag for SSE-C or SSE-KMS encrypted objects need not be content MD5Sum.While encrypted
|
|
// md5sum is stored internally, return just the last 32 bytes of hex-encoded and
|
|
// encrypted md5sum string for SSE-C
|
|
if !sses3 {
|
|
return encryptedETag[len(encryptedETag)-32:]
|
|
}
|
|
var objectKey crypto.ObjectKey
|
|
copy(objectKey[:], key)
|
|
encBytes, err := hex.DecodeString(encryptedETag)
|
|
if err != nil {
|
|
return encryptedETag
|
|
}
|
|
etagBytes, err := objectKey.UnsealETag(encBytes)
|
|
if err != nil {
|
|
return encryptedETag
|
|
}
|
|
return hex.EncodeToString(etagBytes)
|
|
}
|
|
|
|
// GetDecryptedRange - To decrypt the range (off, length) of the
|
|
// decrypted object stream, we need to read the range (encOff,
|
|
// encLength) of the encrypted object stream to decrypt it, and
|
|
// compute skipLen, the number of bytes to skip in the beginning of
|
|
// the encrypted range.
|
|
//
|
|
// In addition we also compute the object part number for where the
|
|
// requested range starts, along with the DARE sequence number within
|
|
// that part. For single part objects, the partStart will be 0.
|
|
func (o *ObjectInfo) GetDecryptedRange(rs *HTTPRangeSpec) (encOff, encLength, skipLen int64, seqNumber uint32, partStart int, err error) {
|
|
if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
|
|
err = errors.New("Object is not encrypted")
|
|
return
|
|
}
|
|
|
|
if rs == nil {
|
|
// No range, so offsets refer to the whole object.
|
|
return 0, o.Size, 0, 0, 0, nil
|
|
}
|
|
|
|
// Assemble slice of (decrypted) part sizes in `sizes`
|
|
var sizes []int64
|
|
var decObjSize int64 // decrypted total object size
|
|
if o.isMultipart() {
|
|
sizes = make([]int64, len(o.Parts))
|
|
for i, part := range o.Parts {
|
|
var partSize uint64
|
|
partSize, err = sio.DecryptedSize(uint64(part.Size))
|
|
if err != nil {
|
|
err = errObjectTampered
|
|
return
|
|
}
|
|
sizes[i] = int64(partSize)
|
|
decObjSize += int64(partSize)
|
|
}
|
|
} else {
|
|
var partSize uint64
|
|
partSize, err = sio.DecryptedSize(uint64(o.Size))
|
|
if err != nil {
|
|
err = errObjectTampered
|
|
return
|
|
}
|
|
sizes = []int64{int64(partSize)}
|
|
decObjSize = sizes[0]
|
|
}
|
|
|
|
var off, length int64
|
|
off, length, err = rs.GetOffsetLength(decObjSize)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// At this point, we have:
|
|
//
|
|
// 1. the decrypted part sizes in `sizes` (single element for
|
|
// single part object) and total decrypted object size `decObjSize`
|
|
//
|
|
// 2. the (decrypted) start offset `off` and (decrypted)
|
|
// length to read `length`
|
|
//
|
|
// These are the inputs to the rest of the algorithm below.
|
|
|
|
// Locate the part containing the start of the required range
|
|
var partEnd int
|
|
var cumulativeSum, encCumulativeSum int64
|
|
for i, size := range sizes {
|
|
if off < cumulativeSum+size {
|
|
partStart = i
|
|
break
|
|
}
|
|
cumulativeSum += size
|
|
encPartSize, _ := sio.EncryptedSize(uint64(size))
|
|
encCumulativeSum += int64(encPartSize)
|
|
}
|
|
// partStart is always found in the loop above,
|
|
// because off is validated.
|
|
|
|
sseDAREEncPackageBlockSize := int64(SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
|
|
startPkgNum := (off - cumulativeSum) / SSEDAREPackageBlockSize
|
|
|
|
// Now we can calculate the number of bytes to skip
|
|
skipLen = (off - cumulativeSum) % SSEDAREPackageBlockSize
|
|
|
|
encOff = encCumulativeSum + startPkgNum*sseDAREEncPackageBlockSize
|
|
// Locate the part containing the end of the required range
|
|
endOffset := off + length - 1
|
|
for i1, size := range sizes[partStart:] {
|
|
i := partStart + i1
|
|
if endOffset < cumulativeSum+size {
|
|
partEnd = i
|
|
break
|
|
}
|
|
cumulativeSum += size
|
|
encPartSize, _ := sio.EncryptedSize(uint64(size))
|
|
encCumulativeSum += int64(encPartSize)
|
|
}
|
|
// partEnd is always found in the loop above, because off and
|
|
// length are validated.
|
|
endPkgNum := (endOffset - cumulativeSum) / SSEDAREPackageBlockSize
|
|
// Compute endEncOffset with one additional DARE package (so
|
|
// we read the package containing the last desired byte).
|
|
endEncOffset := encCumulativeSum + (endPkgNum+1)*sseDAREEncPackageBlockSize
|
|
// Check if the DARE package containing the end offset is a
|
|
// full sized package (as the last package in the part may be
|
|
// smaller)
|
|
lastPartSize, _ := sio.EncryptedSize(uint64(sizes[partEnd]))
|
|
if endEncOffset > encCumulativeSum+int64(lastPartSize) {
|
|
endEncOffset = encCumulativeSum + int64(lastPartSize)
|
|
}
|
|
encLength = endEncOffset - encOff
|
|
// Set the sequence number as the starting package number of
|
|
// the requested block
|
|
seqNumber = uint32(startPkgNum)
|
|
return encOff, encLength, skipLen, seqNumber, partStart, nil
|
|
}
|
|
|
|
// EncryptedSize returns the size of the object after encryption.
|
|
// An encrypted object is always larger than a plain object
|
|
// except for zero size objects.
|
|
func (o *ObjectInfo) EncryptedSize() int64 {
|
|
size, err := sio.EncryptedSize(uint64(o.Size))
|
|
if err != nil {
|
|
// This cannot happen since AWS S3 allows parts to be 5GB at most
|
|
// sio max. size is 256 TB
|
|
reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10))
|
|
ctx := logger.SetReqInfo(GlobalContext, reqInfo)
|
|
logger.CriticalIf(ctx, err)
|
|
}
|
|
return int64(size)
|
|
}
|
|
|
|
// DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
|
|
// It fails if the object is encrypted and the HTTP headers don't contain
|
|
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
|
|
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
|
|
// decryption succeeded.
|
|
//
|
|
// DecryptObjectInfo also returns whether the object is encrypted or not.
|
|
func DecryptObjectInfo(info *ObjectInfo, r *http.Request) (encrypted bool, err error) {
|
|
// Directories are never encrypted.
|
|
if info.IsDir {
|
|
return false, nil
|
|
}
|
|
if r == nil {
|
|
return false, errInvalidArgument
|
|
}
|
|
|
|
headers := r.Header
|
|
|
|
// disallow X-Amz-Server-Side-Encryption header on HEAD and GET
|
|
switch r.Method {
|
|
case http.MethodGet, http.MethodHead:
|
|
if crypto.S3.IsRequested(headers) || crypto.S3KMS.IsRequested(headers) {
|
|
return false, errInvalidEncryptionParameters
|
|
}
|
|
}
|
|
|
|
_, encrypted = crypto.IsEncrypted(info.UserDefined)
|
|
if !encrypted && crypto.SSEC.IsRequested(headers) && r.Header.Get(xhttp.AmzCopySource) == "" {
|
|
return false, errInvalidEncryptionParameters
|
|
}
|
|
|
|
if encrypted {
|
|
if crypto.SSEC.IsEncrypted(info.UserDefined) {
|
|
if !(crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers)) {
|
|
return encrypted, errEncryptedObject
|
|
}
|
|
}
|
|
|
|
if crypto.S3.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
|
|
if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
|
|
return encrypted, errEncryptedObject
|
|
}
|
|
}
|
|
|
|
if crypto.S3KMS.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
|
|
if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
|
|
return encrypted, errEncryptedObject
|
|
}
|
|
}
|
|
|
|
if _, err = info.DecryptedSize(); err != nil {
|
|
return encrypted, err
|
|
}
|
|
|
|
if _, ok := crypto.IsEncrypted(info.UserDefined); ok && !crypto.IsMultiPart(info.UserDefined) {
|
|
info.ETag = getDecryptedETag(headers, *info, false)
|
|
}
|
|
}
|
|
|
|
return encrypted, nil
|
|
}
|
|
|
|
type (
|
|
objectMetaEncryptFn func(baseKey string, data []byte) []byte
|
|
objectMetaDecryptFn func(baseKey string, data []byte) ([]byte, error)
|
|
)
|
|
|
|
// metadataEncrypter returns a function that will read data from input,
|
|
// encrypt it using the provided key and return the result.
|
|
// 0 sized inputs are passed through.
|
|
func metadataEncrypter(key crypto.ObjectKey) objectMetaEncryptFn {
|
|
return func(baseKey string, data []byte) []byte {
|
|
if len(data) == 0 {
|
|
return data
|
|
}
|
|
var buffer bytes.Buffer
|
|
mac := hmac.New(sha256.New, key[:])
|
|
mac.Write([]byte(baseKey))
|
|
if _, err := sio.Encrypt(&buffer, bytes.NewReader(data), sio.Config{Key: mac.Sum(nil), CipherSuites: fips.DARECiphers()}); err != nil {
|
|
logger.CriticalIf(context.Background(), errors.New("unable to encrypt using object key"))
|
|
}
|
|
return buffer.Bytes()
|
|
}
|
|
}
|
|
|
|
// metadataDecrypter reverses metadataEncrypter.
|
|
func (o *ObjectInfo) metadataDecrypter() objectMetaDecryptFn {
|
|
return func(baseKey string, input []byte) ([]byte, error) {
|
|
if len(input) == 0 {
|
|
return input, nil
|
|
}
|
|
|
|
key, err := decryptObjectMeta(nil, o.Bucket, o.Name, o.UserDefined)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
mac := hmac.New(sha256.New, key)
|
|
mac.Write([]byte(baseKey))
|
|
return sio.DecryptBuffer(nil, input, sio.Config{Key: mac.Sum(nil), CipherSuites: fips.DARECiphers()})
|
|
}
|
|
}
|
|
|
|
// decryptChecksums will attempt to decode checksums and return it/them if set.
|
|
// if part > 0, and we have the checksum for the part that will be returned.
|
|
func (o *ObjectInfo) decryptPartsChecksums() {
|
|
data := o.Checksum
|
|
if len(data) == 0 {
|
|
return
|
|
}
|
|
if _, encrypted := crypto.IsEncrypted(o.UserDefined); encrypted {
|
|
decrypted, err := o.metadataDecrypter()("object-checksum", data)
|
|
if err != nil {
|
|
logger.LogIf(GlobalContext, err)
|
|
return
|
|
}
|
|
data = decrypted
|
|
}
|
|
cs := hash.ReadPartCheckSums(data)
|
|
if len(cs) == len(o.Parts) {
|
|
for i := range o.Parts {
|
|
o.Parts[i].Checksums = cs[i]
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// metadataEncryptFn provides an encryption function for metadata.
|
|
// Will return nil, nil if unencrypted.
|
|
func (o *ObjectInfo) metadataEncryptFn(headers http.Header) (objectMetaEncryptFn, error) {
|
|
kind, _ := crypto.IsEncrypted(o.UserDefined)
|
|
switch kind {
|
|
case crypto.SSEC:
|
|
if crypto.SSECopy.IsRequested(headers) {
|
|
key, err := crypto.SSECopy.ParseHTTP(headers)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
objectEncryptionKey, err := decryptObjectMeta(key[:], o.Bucket, o.Name, o.UserDefined)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(objectEncryptionKey) == 32 {
|
|
var key crypto.ObjectKey
|
|
copy(key[:], objectEncryptionKey)
|
|
return metadataEncrypter(key), nil
|
|
}
|
|
return nil, errors.New("metadataEncryptFn: unexpected key size")
|
|
}
|
|
case crypto.S3, crypto.S3KMS:
|
|
objectEncryptionKey, err := decryptObjectMeta(nil, o.Bucket, o.Name, o.UserDefined)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(objectEncryptionKey) == 32 {
|
|
var key crypto.ObjectKey
|
|
copy(key[:], objectEncryptionKey)
|
|
return metadataEncrypter(key), nil
|
|
}
|
|
return nil, errors.New("metadataEncryptFn: unexpected key size")
|
|
}
|
|
|
|
return nil, nil
|
|
}
|
|
|
|
// decryptChecksums will attempt to decode checksums and return it/them if set.
|
|
// if part > 0, and we have the checksum for the part that will be returned.
|
|
func (o *ObjectInfo) decryptChecksums(part int) map[string]string {
|
|
data := o.Checksum
|
|
if len(data) == 0 {
|
|
return nil
|
|
}
|
|
if _, encrypted := crypto.IsEncrypted(o.UserDefined); encrypted {
|
|
decrypted, err := o.metadataDecrypter()("object-checksum", data)
|
|
if err != nil {
|
|
logger.LogIf(GlobalContext, err)
|
|
return nil
|
|
}
|
|
data = decrypted
|
|
}
|
|
return hash.ReadCheckSums(data, part)
|
|
}
|