mirror of
https://github.com/minio/minio.git
synced 2024-12-25 14:45:54 -05:00
c1a49be639
This commit replaces the usage of github.com/minio/sha256-simd with crypto/sha256 of the standard library in all non-performance critical paths. This is necessary for FIPS 140-2 compliance which requires that all crypto. primitives are implemented by a FIPS-validated module. Go can use the Google FIPS module. The boringcrypto branch of the Go standard library uses the BoringSSL FIPS module to implement crypto. primitives like AES or SHA256. We only keep github.com/minio/sha256-simd when computing the content-SHA256 of an object. Therefore, this commit relies on a build tag `fips`. When MinIO is compiled without the `fips` flag it will use github.com/minio/sha256-simd. When MinIO is compiled with the fips flag (go build --tags "fips") then MinIO uses crypto/sha256 to compute the content-SHA256.
829 lines
26 KiB
Go
829 lines
26 KiB
Go
/*
|
|
* MinIO Cloud Storage, (C) 2017-2020 MinIO, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package cmd
|
|
|
|
import (
|
|
"bufio"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"crypto/subtle"
|
|
"encoding/binary"
|
|
"encoding/hex"
|
|
"errors"
|
|
"io"
|
|
"net/http"
|
|
"path"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/minio/minio/cmd/crypto"
|
|
xhttp "github.com/minio/minio/cmd/http"
|
|
"github.com/minio/minio/cmd/logger"
|
|
"github.com/minio/sio"
|
|
)
|
|
|
|
var (
|
|
// AWS errors for invalid SSE-C requests.
|
|
errEncryptedObject = errors.New("The object was stored using a form of SSE")
|
|
errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied
|
|
errKMSNotConfigured = errors.New("KMS not configured for a server side encrypted object")
|
|
// Additional MinIO errors for SSE-C requests.
|
|
errObjectTampered = errors.New("The requested object was modified and may be compromised")
|
|
// error returned when invalid encryption parameters are specified
|
|
errInvalidEncryptionParameters = errors.New("The encryption parameters are not applicable to this object")
|
|
)
|
|
|
|
const (
|
|
// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
|
|
// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
|
|
SSECustomerKeySize = 32
|
|
|
|
// SSEIVSize is the size of the IV data
|
|
SSEIVSize = 32 // 32 bytes
|
|
|
|
// SSEDAREPackageBlockSize - SSE dare package block size.
|
|
SSEDAREPackageBlockSize = 64 * 1024 // 64KiB bytes
|
|
|
|
// SSEDAREPackageMetaSize - SSE dare package meta padding bytes.
|
|
SSEDAREPackageMetaSize = 32 // 32 bytes
|
|
|
|
)
|
|
|
|
// isEncryptedMultipart returns true if the current object is
|
|
// uploaded by the user using multipart mechanism:
|
|
// initiate new multipart, upload part, complete upload
|
|
func isEncryptedMultipart(objInfo ObjectInfo) bool {
|
|
if len(objInfo.Parts) == 0 {
|
|
return false
|
|
}
|
|
if !crypto.IsMultiPart(objInfo.UserDefined) {
|
|
return false
|
|
}
|
|
for _, part := range objInfo.Parts {
|
|
_, err := sio.DecryptedSize(uint64(part.Size))
|
|
if err != nil {
|
|
return false
|
|
}
|
|
}
|
|
// Further check if this object is uploaded using multipart mechanism
|
|
// by the user and it is not about Erasure internally splitting the
|
|
// object into parts in PutObject()
|
|
return !(objInfo.backendType == BackendErasure && len(objInfo.ETag) == 32)
|
|
}
|
|
|
|
// ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request.
|
|
// It returns the client provided key on success.
|
|
func ParseSSECopyCustomerRequest(h http.Header, metadata map[string]string) (key []byte, err error) {
|
|
if crypto.S3.IsEncrypted(metadata) && crypto.SSECopy.IsRequested(h) {
|
|
return nil, crypto.ErrIncompatibleEncryptionMethod
|
|
}
|
|
k, err := crypto.SSECopy.ParseHTTP(h)
|
|
return k[:], err
|
|
}
|
|
|
|
// ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
|
|
// It returns the client provided key on success.
|
|
func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
|
|
return ParseSSECustomerHeader(r.Header)
|
|
}
|
|
|
|
// ParseSSECustomerHeader parses the SSE-C header fields and returns
|
|
// the client provided key on success.
|
|
func ParseSSECustomerHeader(header http.Header) (key []byte, err error) {
|
|
if crypto.S3.IsRequested(header) && crypto.SSEC.IsRequested(header) {
|
|
return key, crypto.ErrIncompatibleEncryptionMethod
|
|
}
|
|
|
|
k, err := crypto.SSEC.ParseHTTP(header)
|
|
return k[:], err
|
|
}
|
|
|
|
// This function rotates old to new key.
|
|
func rotateKey(oldKey []byte, newKey []byte, bucket, object string, metadata map[string]string) error {
|
|
switch {
|
|
default:
|
|
return errObjectTampered
|
|
case crypto.SSEC.IsEncrypted(metadata):
|
|
sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var objectKey crypto.ObjectKey
|
|
var extKey [32]byte
|
|
copy(extKey[:], oldKey)
|
|
if err = objectKey.Unseal(extKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
|
|
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 {
|
|
return errInvalidSSEParameters // AWS returns special error for equal but invalid keys.
|
|
}
|
|
return crypto.ErrInvalidCustomerKey // To provide strict AWS S3 compatibility we return: access denied.
|
|
|
|
}
|
|
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && sealedKey.Algorithm == crypto.SealAlgorithm {
|
|
return nil // don't rotate on equal keys if seal algorithm is latest
|
|
}
|
|
copy(extKey[:], newKey)
|
|
sealedKey = objectKey.Seal(extKey, sealedKey.IV, crypto.SSEC.String(), bucket, object)
|
|
crypto.SSEC.CreateMetadata(metadata, sealedKey)
|
|
return nil
|
|
case crypto.S3.IsEncrypted(metadata):
|
|
if GlobalKMS == nil {
|
|
return errKMSNotConfigured
|
|
}
|
|
keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
oldKey, err := GlobalKMS.UnsealKey(keyID, kmsKey, crypto.Context{bucket: path.Join(bucket, object)})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var objectKey crypto.ObjectKey
|
|
if err = objectKey.Unseal(oldKey, sealedKey, crypto.S3.String(), bucket, object); err != nil {
|
|
return err
|
|
}
|
|
|
|
newKey, encKey, err := GlobalKMS.GenerateKey(GlobalKMS.DefaultKeyID(), crypto.Context{bucket: path.Join(bucket, object)})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
sealedKey = objectKey.Seal(newKey, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
|
|
crypto.S3.CreateMetadata(metadata, GlobalKMS.DefaultKeyID(), encKey, sealedKey)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
func newEncryptMetadata(key []byte, bucket, object string, metadata map[string]string, sseS3 bool) (crypto.ObjectKey, error) {
|
|
var sealedKey crypto.SealedKey
|
|
if sseS3 {
|
|
if GlobalKMS == nil {
|
|
return crypto.ObjectKey{}, errKMSNotConfigured
|
|
}
|
|
key, encKey, err := GlobalKMS.GenerateKey(GlobalKMS.DefaultKeyID(), crypto.Context{bucket: path.Join(bucket, object)})
|
|
if err != nil {
|
|
return crypto.ObjectKey{}, err
|
|
}
|
|
|
|
objectKey := crypto.GenerateKey(key, rand.Reader)
|
|
sealedKey = objectKey.Seal(key, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
|
|
crypto.S3.CreateMetadata(metadata, GlobalKMS.DefaultKeyID(), encKey, sealedKey)
|
|
return objectKey, nil
|
|
}
|
|
var extKey [32]byte
|
|
copy(extKey[:], key)
|
|
objectKey := crypto.GenerateKey(extKey, rand.Reader)
|
|
sealedKey = objectKey.Seal(extKey, crypto.GenerateIV(rand.Reader), crypto.SSEC.String(), bucket, object)
|
|
crypto.SSEC.CreateMetadata(metadata, sealedKey)
|
|
return objectKey, nil
|
|
}
|
|
|
|
func newEncryptReader(content io.Reader, key []byte, bucket, object string, metadata map[string]string, sseS3 bool) (io.Reader, crypto.ObjectKey, error) {
|
|
objectEncryptionKey, err := newEncryptMetadata(key, bucket, object, metadata, sseS3)
|
|
if err != nil {
|
|
return nil, crypto.ObjectKey{}, err
|
|
}
|
|
|
|
reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey[:], MinVersion: sio.Version20})
|
|
if err != nil {
|
|
return nil, crypto.ObjectKey{}, crypto.ErrInvalidCustomerKey
|
|
}
|
|
|
|
return reader, objectEncryptionKey, nil
|
|
}
|
|
|
|
// set new encryption metadata from http request headers for SSE-C and generated key from KMS in the case of
|
|
// SSE-S3
|
|
func setEncryptionMetadata(r *http.Request, bucket, object string, metadata map[string]string) (err error) {
|
|
var (
|
|
key []byte
|
|
)
|
|
if crypto.SSEC.IsRequested(r.Header) {
|
|
key, err = ParseSSECustomerRequest(r)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
_, err = newEncryptMetadata(key, bucket, object, metadata, crypto.S3.IsRequested(r.Header))
|
|
return
|
|
}
|
|
|
|
// EncryptRequest takes the client provided content and encrypts the data
|
|
// with the client provided key. It also marks the object as client-side-encrypted
|
|
// and sets the correct headers.
|
|
func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, crypto.ObjectKey, error) {
|
|
if crypto.S3.IsRequested(r.Header) && crypto.SSEC.IsRequested(r.Header) {
|
|
return nil, crypto.ObjectKey{}, crypto.ErrIncompatibleEncryptionMethod
|
|
}
|
|
if r.ContentLength > encryptBufferThreshold {
|
|
// The encryption reads in blocks of 64KB.
|
|
// We add a buffer on bigger files to reduce the number of syscalls upstream.
|
|
content = bufio.NewReaderSize(content, encryptBufferSize)
|
|
}
|
|
|
|
var key []byte
|
|
if crypto.SSEC.IsRequested(r.Header) {
|
|
var err error
|
|
key, err = ParseSSECustomerRequest(r)
|
|
if err != nil {
|
|
return nil, crypto.ObjectKey{}, err
|
|
}
|
|
}
|
|
return newEncryptReader(content, key, bucket, object, metadata, crypto.S3.IsRequested(r.Header))
|
|
}
|
|
|
|
func decryptObjectInfo(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
|
|
switch kind, _ := crypto.IsEncrypted(metadata); kind {
|
|
case crypto.S3:
|
|
var KMS crypto.KMS = GlobalKMS
|
|
if isCacheEncrypted(metadata) {
|
|
KMS = globalCacheKMS
|
|
}
|
|
if KMS == nil {
|
|
return nil, errKMSNotConfigured
|
|
}
|
|
objectKey, err := crypto.S3.UnsealObjectKey(KMS, metadata, bucket, object)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return objectKey[:], nil
|
|
case crypto.S3KMS:
|
|
if GlobalKMS == nil {
|
|
return nil, errKMSNotConfigured
|
|
}
|
|
objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return objectKey[:], nil
|
|
case crypto.SSEC:
|
|
sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var (
|
|
objectKey crypto.ObjectKey
|
|
extKey [32]byte
|
|
)
|
|
copy(extKey[:], key)
|
|
if err = objectKey.Unseal(extKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
|
|
return nil, err
|
|
}
|
|
return objectKey[:], nil
|
|
default:
|
|
return nil, errObjectTampered
|
|
}
|
|
}
|
|
|
|
// Adding support for reader based interface
|
|
|
|
// DecryptRequestWithSequenceNumberR - same as
|
|
// DecryptRequestWithSequenceNumber but with a reader
|
|
func DecryptRequestWithSequenceNumberR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
|
|
if crypto.S3.IsEncrypted(metadata) {
|
|
return newDecryptReader(client, nil, bucket, object, seqNumber, metadata)
|
|
}
|
|
|
|
key, err := ParseSSECustomerHeader(h)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
|
|
}
|
|
|
|
// DecryptCopyRequestR - same as DecryptCopyRequest, but with a
|
|
// Reader
|
|
func DecryptCopyRequestR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
|
|
var (
|
|
key []byte
|
|
err error
|
|
)
|
|
if crypto.SSECopy.IsRequested(h) {
|
|
key, err = ParseSSECopyCustomerRequest(h, metadata)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
|
|
}
|
|
|
|
func newDecryptReader(client io.Reader, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
|
|
objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return newDecryptReaderWithObjectKey(client, objectEncryptionKey, seqNumber)
|
|
}
|
|
|
|
func newDecryptReaderWithObjectKey(client io.Reader, objectEncryptionKey []byte, seqNumber uint32) (io.Reader, error) {
|
|
reader, err := sio.DecryptReader(client, sio.Config{
|
|
Key: objectEncryptionKey,
|
|
SequenceNumber: seqNumber,
|
|
})
|
|
if err != nil {
|
|
return nil, crypto.ErrInvalidCustomerKey
|
|
}
|
|
return reader, nil
|
|
}
|
|
|
|
// DecryptBlocksRequestR - same as DecryptBlocksRequest but with a
|
|
// reader
|
|
func DecryptBlocksRequestR(inputReader io.Reader, h http.Header, seqNumber uint32, partStart int, oi ObjectInfo, copySource bool) (io.Reader, error) {
|
|
|
|
bucket, object := oi.Bucket, oi.Name
|
|
// Single part case
|
|
if !isEncryptedMultipart(oi) {
|
|
var reader io.Reader
|
|
var err error
|
|
if copySource {
|
|
reader, err = DecryptCopyRequestR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
|
|
} else {
|
|
reader, err = DecryptRequestWithSequenceNumberR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return reader, nil
|
|
}
|
|
|
|
partDecRelOffset := int64(seqNumber) * SSEDAREPackageBlockSize
|
|
partEncRelOffset := int64(seqNumber) * (SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
|
|
|
|
w := &DecryptBlocksReader{
|
|
reader: inputReader,
|
|
startSeqNum: seqNumber,
|
|
partDecRelOffset: partDecRelOffset,
|
|
partEncRelOffset: partEncRelOffset,
|
|
parts: oi.Parts,
|
|
partIndex: partStart,
|
|
header: h,
|
|
bucket: bucket,
|
|
object: object,
|
|
customerKeyHeader: h.Get(xhttp.AmzServerSideEncryptionCustomerKey),
|
|
copySource: copySource,
|
|
metadata: cloneMSS(oi.UserDefined),
|
|
}
|
|
|
|
if w.copySource {
|
|
w.customerKeyHeader = h.Get(xhttp.AmzServerSideEncryptionCopyCustomerKey)
|
|
}
|
|
|
|
if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return w, nil
|
|
}
|
|
|
|
// DecryptBlocksReader - decrypts multipart parts, while implementing
|
|
// a io.Reader compatible interface.
|
|
type DecryptBlocksReader struct {
|
|
// Source of the encrypted content that will be decrypted
|
|
reader io.Reader
|
|
// Current decrypter for the current encrypted data block
|
|
decrypter io.Reader
|
|
// Start sequence number
|
|
startSeqNum uint32
|
|
// Current part index
|
|
partIndex int
|
|
// Parts information
|
|
parts []ObjectPartInfo
|
|
header http.Header
|
|
bucket, object string
|
|
metadata map[string]string
|
|
|
|
partDecRelOffset, partEncRelOffset int64
|
|
|
|
copySource bool
|
|
// Customer Key
|
|
customerKeyHeader string
|
|
}
|
|
|
|
func (d *DecryptBlocksReader) buildDecrypter(partID int) error {
|
|
m := cloneMSS(d.metadata)
|
|
// Initialize the first decrypter; new decrypters will be
|
|
// initialized in Read() operation as needed.
|
|
var key []byte
|
|
var err error
|
|
if d.copySource {
|
|
if crypto.SSEC.IsEncrypted(d.metadata) {
|
|
d.header.Set(xhttp.AmzServerSideEncryptionCopyCustomerKey, d.customerKeyHeader)
|
|
key, err = ParseSSECopyCustomerRequest(d.header, d.metadata)
|
|
}
|
|
} else {
|
|
if crypto.SSEC.IsEncrypted(d.metadata) {
|
|
d.header.Set(xhttp.AmzServerSideEncryptionCustomerKey, d.customerKeyHeader)
|
|
key, err = ParseSSECustomerHeader(d.header)
|
|
}
|
|
}
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
objectEncryptionKey, err := decryptObjectInfo(key, d.bucket, d.object, m)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var partIDbin [4]byte
|
|
binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID
|
|
|
|
mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key
|
|
mac.Write(partIDbin[:])
|
|
partEncryptionKey := mac.Sum(nil)
|
|
|
|
// Limit the reader, so the decryptor doesnt receive bytes
|
|
// from the next part (different DARE stream)
|
|
encLenToRead := d.parts[d.partIndex].Size - d.partEncRelOffset
|
|
decrypter, err := newDecryptReaderWithObjectKey(io.LimitReader(d.reader, encLenToRead), partEncryptionKey, d.startSeqNum)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
d.decrypter = decrypter
|
|
return nil
|
|
}
|
|
|
|
func (d *DecryptBlocksReader) Read(p []byte) (int, error) {
|
|
var err error
|
|
var n1 int
|
|
decPartSize, _ := sio.DecryptedSize(uint64(d.parts[d.partIndex].Size))
|
|
unreadPartLen := int64(decPartSize) - d.partDecRelOffset
|
|
if int64(len(p)) < unreadPartLen {
|
|
n1, err = d.decrypter.Read(p)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
d.partDecRelOffset += int64(n1)
|
|
} else {
|
|
n1, err = io.ReadFull(d.decrypter, p[:unreadPartLen])
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// We should now proceed to next part, reset all
|
|
// values appropriately.
|
|
d.partEncRelOffset = 0
|
|
d.partDecRelOffset = 0
|
|
d.startSeqNum = 0
|
|
|
|
d.partIndex++
|
|
if d.partIndex == len(d.parts) {
|
|
return n1, io.EOF
|
|
}
|
|
|
|
err = d.buildDecrypter(d.parts[d.partIndex].Number)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
n1, err = d.decrypter.Read(p[n1:])
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
d.partDecRelOffset += int64(n1)
|
|
}
|
|
return len(p), nil
|
|
}
|
|
|
|
// DecryptedSize returns the size of the object after decryption in bytes.
|
|
// It returns an error if the object is not encrypted or marked as encrypted
|
|
// but has an invalid size.
|
|
func (o *ObjectInfo) DecryptedSize() (int64, error) {
|
|
if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
|
|
return 0, errors.New("Cannot compute decrypted size of an unencrypted object")
|
|
}
|
|
if !isEncryptedMultipart(*o) {
|
|
size, err := sio.DecryptedSize(uint64(o.Size))
|
|
if err != nil {
|
|
err = errObjectTampered // assign correct error type
|
|
}
|
|
return int64(size), err
|
|
}
|
|
|
|
var size int64
|
|
for _, part := range o.Parts {
|
|
partSize, err := sio.DecryptedSize(uint64(part.Size))
|
|
if err != nil {
|
|
return 0, errObjectTampered
|
|
}
|
|
size += int64(partSize)
|
|
}
|
|
return size, nil
|
|
}
|
|
|
|
// DecryptETag decrypts the ETag that is part of given object
|
|
// with the given object encryption key.
|
|
//
|
|
// However, DecryptETag does not try to decrypt the ETag if
|
|
// it consists of a 128 bit hex value (32 hex chars) and exactly
|
|
// one '-' followed by a 32-bit number.
|
|
// This special case adresses randomly-generated ETags generated
|
|
// by the MinIO server when running in non-compat mode. These
|
|
// random ETags are not encrypt.
|
|
//
|
|
// Calling DecryptETag with a non-randomly generated ETag will
|
|
// fail.
|
|
func DecryptETag(key crypto.ObjectKey, object ObjectInfo) (string, error) {
|
|
if n := strings.Count(object.ETag, "-"); n > 0 {
|
|
if n != 1 {
|
|
return "", errObjectTampered
|
|
}
|
|
i := strings.IndexByte(object.ETag, '-')
|
|
if len(object.ETag[:i]) != 32 {
|
|
return "", errObjectTampered
|
|
}
|
|
if _, err := hex.DecodeString(object.ETag[:32]); err != nil {
|
|
return "", errObjectTampered
|
|
}
|
|
if _, err := strconv.ParseInt(object.ETag[i+1:], 10, 32); err != nil {
|
|
return "", errObjectTampered
|
|
}
|
|
return object.ETag, nil
|
|
}
|
|
|
|
etag, err := hex.DecodeString(object.ETag)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
etag, err = key.UnsealETag(etag)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
return hex.EncodeToString(etag), nil
|
|
}
|
|
|
|
// For encrypted objects, the ETag sent by client if available
|
|
// is stored in encrypted form in the backend. Decrypt the ETag
|
|
// if ETag was previously encrypted.
|
|
func getDecryptedETag(headers http.Header, objInfo ObjectInfo, copySource bool) (decryptedETag string) {
|
|
var (
|
|
key [32]byte
|
|
err error
|
|
)
|
|
// If ETag is contentMD5Sum return it as is.
|
|
if len(objInfo.ETag) == 32 {
|
|
return objInfo.ETag
|
|
}
|
|
|
|
if crypto.IsMultiPart(objInfo.UserDefined) {
|
|
return objInfo.ETag
|
|
}
|
|
|
|
if crypto.SSECopy.IsRequested(headers) {
|
|
key, err = crypto.SSECopy.ParseHTTP(headers)
|
|
if err != nil {
|
|
return objInfo.ETag
|
|
}
|
|
}
|
|
|
|
// As per AWS S3 Spec, ETag for SSE-C encrypted objects need not be MD5Sum of the data.
|
|
// Since server side copy with same source and dest just replaces the ETag, we save
|
|
// encrypted content MD5Sum as ETag for both SSE-C and SSE-S3, we standardize the ETag
|
|
// encryption across SSE-C and SSE-S3, and only return last 32 bytes for SSE-C
|
|
if crypto.SSEC.IsEncrypted(objInfo.UserDefined) && !copySource {
|
|
return objInfo.ETag[len(objInfo.ETag)-32:]
|
|
}
|
|
|
|
objectEncryptionKey, err := decryptObjectInfo(key[:], objInfo.Bucket, objInfo.Name, objInfo.UserDefined)
|
|
if err != nil {
|
|
return objInfo.ETag
|
|
}
|
|
return tryDecryptETag(objectEncryptionKey, objInfo.ETag, false)
|
|
}
|
|
|
|
// helper to decrypt Etag given object encryption key and encrypted ETag
|
|
func tryDecryptETag(key []byte, encryptedETag string, ssec bool) string {
|
|
// ETag for SSE-C encrypted objects need not be content MD5Sum.While encrypted
|
|
// md5sum is stored internally, return just the last 32 bytes of hex-encoded and
|
|
// encrypted md5sum string for SSE-C
|
|
if ssec {
|
|
return encryptedETag[len(encryptedETag)-32:]
|
|
}
|
|
var objectKey crypto.ObjectKey
|
|
copy(objectKey[:], key)
|
|
encBytes, err := hex.DecodeString(encryptedETag)
|
|
if err != nil {
|
|
return encryptedETag
|
|
}
|
|
etagBytes, err := objectKey.UnsealETag(encBytes)
|
|
if err != nil {
|
|
return encryptedETag
|
|
}
|
|
return hex.EncodeToString(etagBytes)
|
|
}
|
|
|
|
// GetDecryptedRange - To decrypt the range (off, length) of the
|
|
// decrypted object stream, we need to read the range (encOff,
|
|
// encLength) of the encrypted object stream to decrypt it, and
|
|
// compute skipLen, the number of bytes to skip in the beginning of
|
|
// the encrypted range.
|
|
//
|
|
// In addition we also compute the object part number for where the
|
|
// requested range starts, along with the DARE sequence number within
|
|
// that part. For single part objects, the partStart will be 0.
|
|
func (o *ObjectInfo) GetDecryptedRange(rs *HTTPRangeSpec) (encOff, encLength, skipLen int64, seqNumber uint32, partStart int, err error) {
|
|
if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
|
|
err = errors.New("Object is not encrypted")
|
|
return
|
|
}
|
|
|
|
if rs == nil {
|
|
// No range, so offsets refer to the whole object.
|
|
return 0, o.Size, 0, 0, 0, nil
|
|
}
|
|
|
|
// Assemble slice of (decrypted) part sizes in `sizes`
|
|
var sizes []int64
|
|
var decObjSize int64 // decrypted total object size
|
|
if isEncryptedMultipart(*o) {
|
|
sizes = make([]int64, len(o.Parts))
|
|
for i, part := range o.Parts {
|
|
var partSize uint64
|
|
partSize, err = sio.DecryptedSize(uint64(part.Size))
|
|
if err != nil {
|
|
err = errObjectTampered
|
|
return
|
|
}
|
|
sizes[i] = int64(partSize)
|
|
decObjSize += int64(partSize)
|
|
}
|
|
} else {
|
|
var partSize uint64
|
|
partSize, err = sio.DecryptedSize(uint64(o.Size))
|
|
if err != nil {
|
|
err = errObjectTampered
|
|
return
|
|
}
|
|
sizes = []int64{int64(partSize)}
|
|
decObjSize = sizes[0]
|
|
}
|
|
|
|
var off, length int64
|
|
off, length, err = rs.GetOffsetLength(decObjSize)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// At this point, we have:
|
|
//
|
|
// 1. the decrypted part sizes in `sizes` (single element for
|
|
// single part object) and total decrypted object size `decObjSize`
|
|
//
|
|
// 2. the (decrypted) start offset `off` and (decrypted)
|
|
// length to read `length`
|
|
//
|
|
// These are the inputs to the rest of the algorithm below.
|
|
|
|
// Locate the part containing the start of the required range
|
|
var partEnd int
|
|
var cumulativeSum, encCumulativeSum int64
|
|
for i, size := range sizes {
|
|
if off < cumulativeSum+size {
|
|
partStart = i
|
|
break
|
|
}
|
|
cumulativeSum += size
|
|
encPartSize, _ := sio.EncryptedSize(uint64(size))
|
|
encCumulativeSum += int64(encPartSize)
|
|
}
|
|
// partStart is always found in the loop above,
|
|
// because off is validated.
|
|
|
|
sseDAREEncPackageBlockSize := int64(SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
|
|
startPkgNum := (off - cumulativeSum) / SSEDAREPackageBlockSize
|
|
|
|
// Now we can calculate the number of bytes to skip
|
|
skipLen = (off - cumulativeSum) % SSEDAREPackageBlockSize
|
|
|
|
encOff = encCumulativeSum + startPkgNum*sseDAREEncPackageBlockSize
|
|
// Locate the part containing the end of the required range
|
|
endOffset := off + length - 1
|
|
for i1, size := range sizes[partStart:] {
|
|
i := partStart + i1
|
|
if endOffset < cumulativeSum+size {
|
|
partEnd = i
|
|
break
|
|
}
|
|
cumulativeSum += size
|
|
encPartSize, _ := sio.EncryptedSize(uint64(size))
|
|
encCumulativeSum += int64(encPartSize)
|
|
}
|
|
// partEnd is always found in the loop above, because off and
|
|
// length are validated.
|
|
endPkgNum := (endOffset - cumulativeSum) / SSEDAREPackageBlockSize
|
|
// Compute endEncOffset with one additional DARE package (so
|
|
// we read the package containing the last desired byte).
|
|
endEncOffset := encCumulativeSum + (endPkgNum+1)*sseDAREEncPackageBlockSize
|
|
// Check if the DARE package containing the end offset is a
|
|
// full sized package (as the last package in the part may be
|
|
// smaller)
|
|
lastPartSize, _ := sio.EncryptedSize(uint64(sizes[partEnd]))
|
|
if endEncOffset > encCumulativeSum+int64(lastPartSize) {
|
|
endEncOffset = encCumulativeSum + int64(lastPartSize)
|
|
}
|
|
encLength = endEncOffset - encOff
|
|
// Set the sequence number as the starting package number of
|
|
// the requested block
|
|
seqNumber = uint32(startPkgNum)
|
|
return encOff, encLength, skipLen, seqNumber, partStart, nil
|
|
}
|
|
|
|
// EncryptedSize returns the size of the object after encryption.
|
|
// An encrypted object is always larger than a plain object
|
|
// except for zero size objects.
|
|
func (o *ObjectInfo) EncryptedSize() int64 {
|
|
size, err := sio.EncryptedSize(uint64(o.Size))
|
|
if err != nil {
|
|
// This cannot happen since AWS S3 allows parts to be 5GB at most
|
|
// sio max. size is 256 TB
|
|
reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10))
|
|
ctx := logger.SetReqInfo(GlobalContext, reqInfo)
|
|
logger.CriticalIf(ctx, err)
|
|
}
|
|
return int64(size)
|
|
}
|
|
|
|
// DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
|
|
// It fails if the object is encrypted and the HTTP headers don't contain
|
|
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
|
|
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
|
|
// decryption succeeded.
|
|
//
|
|
// DecryptObjectInfo also returns whether the object is encrypted or not.
|
|
func DecryptObjectInfo(info *ObjectInfo, r *http.Request) (encrypted bool, err error) {
|
|
// Directories are never encrypted.
|
|
if info.IsDir {
|
|
return false, nil
|
|
}
|
|
if r == nil {
|
|
return false, errInvalidArgument
|
|
}
|
|
|
|
headers := r.Header
|
|
|
|
// disallow X-Amz-Server-Side-Encryption header on HEAD and GET
|
|
switch r.Method {
|
|
case http.MethodGet, http.MethodHead:
|
|
if crypto.S3.IsRequested(headers) {
|
|
return false, errInvalidEncryptionParameters
|
|
}
|
|
}
|
|
|
|
_, encrypted = crypto.IsEncrypted(info.UserDefined)
|
|
if !encrypted && crypto.SSEC.IsRequested(headers) && r.Header.Get(xhttp.AmzCopySource) == "" {
|
|
return false, errInvalidEncryptionParameters
|
|
}
|
|
|
|
if encrypted {
|
|
if crypto.SSEC.IsEncrypted(info.UserDefined) {
|
|
if !(crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers)) {
|
|
return encrypted, errEncryptedObject
|
|
}
|
|
}
|
|
|
|
if crypto.S3.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
|
|
if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
|
|
return encrypted, errEncryptedObject
|
|
}
|
|
}
|
|
|
|
if _, err = info.DecryptedSize(); err != nil {
|
|
return encrypted, err
|
|
}
|
|
|
|
if _, ok := crypto.IsEncrypted(info.UserDefined); ok && !crypto.IsMultiPart(info.UserDefined) {
|
|
info.ETag = getDecryptedETag(headers, *info, false)
|
|
}
|
|
}
|
|
|
|
return encrypted, nil
|
|
}
|
|
|
|
// The customer key in the header is used by the gateway for encryption in the case of
|
|
// s3 gateway double encryption. A new client key is derived from the customer provided
|
|
// key to be sent to the s3 backend for encryption at the backend.
|
|
func deriveClientKey(clientKey [32]byte, bucket, object string) [32]byte {
|
|
var key [32]byte
|
|
mac := hmac.New(sha256.New, clientKey[:])
|
|
mac.Write([]byte(crypto.SSEC.String()))
|
|
mac.Write([]byte(path.Join(bucket, object)))
|
|
mac.Sum(key[:0])
|
|
return key
|
|
}
|