mirror of
https://github.com/minio/minio.git
synced 2025-01-14 16:25:01 -05:00
fffe4ac7e6
* Prevent unnecessary verification of parity blocks while reading erasure coded file. * Update klauspost/reedsolomon and just only reconstruct data blocks while reading (prevent unnecessary parity block reconstruction) * Remove Verification of (all) reconstructed Data and Parity blocks since in our case we are protected by bit rot protection. And even if the verification would fail (essentially impossible) there is no way to definitively say whether the data is still correct or not, so this call make no sense for our use case.
280 lines
6.7 KiB
Go
280 lines
6.7 KiB
Go
/**
|
|
* Matrix Algebra over an 8-bit Galois Field
|
|
*
|
|
* Copyright 2015, Klaus Post
|
|
* Copyright 2015, Backblaze, Inc.
|
|
*/
|
|
|
|
package reedsolomon
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"strconv"
|
|
"strings"
|
|
)
|
|
|
|
// byte[row][col]
|
|
type matrix [][]byte
|
|
|
|
// newMatrix returns a matrix of zeros.
|
|
func newMatrix(rows, cols int) (matrix, error) {
|
|
if rows <= 0 {
|
|
return nil, errInvalidRowSize
|
|
}
|
|
if cols <= 0 {
|
|
return nil, errInvalidColSize
|
|
}
|
|
|
|
m := matrix(make([][]byte, rows))
|
|
for i := range m {
|
|
m[i] = make([]byte, cols)
|
|
}
|
|
return m, nil
|
|
}
|
|
|
|
// NewMatrixData initializes a matrix with the given row-major data.
|
|
// Note that data is not copied from input.
|
|
func newMatrixData(data [][]byte) (matrix, error) {
|
|
m := matrix(data)
|
|
err := m.Check()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return m, nil
|
|
}
|
|
|
|
// IdentityMatrix returns an identity matrix of the given size.
|
|
func identityMatrix(size int) (matrix, error) {
|
|
m, err := newMatrix(size, size)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
for i := range m {
|
|
m[i][i] = 1
|
|
}
|
|
return m, nil
|
|
}
|
|
|
|
// errInvalidRowSize will be returned if attempting to create a matrix with negative or zero row number.
|
|
var errInvalidRowSize = errors.New("invalid row size")
|
|
|
|
// errInvalidColSize will be returned if attempting to create a matrix with negative or zero column number.
|
|
var errInvalidColSize = errors.New("invalid column size")
|
|
|
|
// errColSizeMismatch is returned if the size of matrix columns mismatch.
|
|
var errColSizeMismatch = errors.New("column size is not the same for all rows")
|
|
|
|
func (m matrix) Check() error {
|
|
rows := len(m)
|
|
if rows <= 0 {
|
|
return errInvalidRowSize
|
|
}
|
|
cols := len(m[0])
|
|
if cols <= 0 {
|
|
return errInvalidColSize
|
|
}
|
|
|
|
for _, col := range m {
|
|
if len(col) != cols {
|
|
return errColSizeMismatch
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// String returns a human-readable string of the matrix contents.
|
|
//
|
|
// Example: [[1, 2], [3, 4]]
|
|
func (m matrix) String() string {
|
|
rowOut := make([]string, 0, len(m))
|
|
for _, row := range m {
|
|
colOut := make([]string, 0, len(row))
|
|
for _, col := range row {
|
|
colOut = append(colOut, strconv.Itoa(int(col)))
|
|
}
|
|
rowOut = append(rowOut, "["+strings.Join(colOut, ", ")+"]")
|
|
}
|
|
return "[" + strings.Join(rowOut, ", ") + "]"
|
|
}
|
|
|
|
// Multiply multiplies this matrix (the one on the left) by another
|
|
// matrix (the one on the right) and returns a new matrix with the result.
|
|
func (m matrix) Multiply(right matrix) (matrix, error) {
|
|
if len(m[0]) != len(right) {
|
|
return nil, fmt.Errorf("columns on left (%d) is different than rows on right (%d)", len(m[0]), len(right))
|
|
}
|
|
result, _ := newMatrix(len(m), len(right[0]))
|
|
for r, row := range result {
|
|
for c := range row {
|
|
var value byte
|
|
for i := range m[0] {
|
|
value ^= galMultiply(m[r][i], right[i][c])
|
|
}
|
|
result[r][c] = value
|
|
}
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
// Augment returns the concatenation of this matrix and the matrix on the right.
|
|
func (m matrix) Augment(right matrix) (matrix, error) {
|
|
if len(m) != len(right) {
|
|
return nil, errMatrixSize
|
|
}
|
|
|
|
result, _ := newMatrix(len(m), len(m[0])+len(right[0]))
|
|
for r, row := range m {
|
|
for c := range row {
|
|
result[r][c] = m[r][c]
|
|
}
|
|
cols := len(m[0])
|
|
for c := range right[0] {
|
|
result[r][cols+c] = right[r][c]
|
|
}
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
// errMatrixSize is returned if matrix dimensions are doesn't match.
|
|
var errMatrixSize = errors.New("matrix sizes do not match")
|
|
|
|
func (m matrix) SameSize(n matrix) error {
|
|
if len(m) != len(n) {
|
|
return errMatrixSize
|
|
}
|
|
for i := range m {
|
|
if len(m[i]) != len(n[i]) {
|
|
return errMatrixSize
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Returns a part of this matrix. Data is copied.
|
|
func (m matrix) SubMatrix(rmin, cmin, rmax, cmax int) (matrix, error) {
|
|
result, err := newMatrix(rmax-rmin, cmax-cmin)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// OPTME: If used heavily, use copy function to copy slice
|
|
for r := rmin; r < rmax; r++ {
|
|
for c := cmin; c < cmax; c++ {
|
|
result[r-rmin][c-cmin] = m[r][c]
|
|
}
|
|
}
|
|
return result, nil
|
|
}
|
|
|
|
// SwapRows Exchanges two rows in the matrix.
|
|
func (m matrix) SwapRows(r1, r2 int) error {
|
|
if r1 < 0 || len(m) <= r1 || r2 < 0 || len(m) <= r2 {
|
|
return errInvalidRowSize
|
|
}
|
|
m[r2], m[r1] = m[r1], m[r2]
|
|
return nil
|
|
}
|
|
|
|
// IsSquare will return true if the matrix is square
|
|
// and nil if the matrix is square
|
|
func (m matrix) IsSquare() bool {
|
|
return len(m) == len(m[0])
|
|
}
|
|
|
|
// errSingular is returned if the matrix is singular and cannot be inversed
|
|
var errSingular = errors.New("matrix is singular")
|
|
|
|
// errNotSquare is returned if attempting to inverse a non-square matrix.
|
|
var errNotSquare = errors.New("only square matrices can be inverted")
|
|
|
|
// Invert returns the inverse of this matrix.
|
|
// Returns ErrSingular when the matrix is singular and doesn't have an inverse.
|
|
// The matrix must be square, otherwise ErrNotSquare is returned.
|
|
func (m matrix) Invert() (matrix, error) {
|
|
if !m.IsSquare() {
|
|
return nil, errNotSquare
|
|
}
|
|
|
|
size := len(m)
|
|
work, _ := identityMatrix(size)
|
|
work, _ = m.Augment(work)
|
|
|
|
err := work.gaussianElimination()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return work.SubMatrix(0, size, size, size*2)
|
|
}
|
|
|
|
func (m matrix) gaussianElimination() error {
|
|
rows := len(m)
|
|
columns := len(m[0])
|
|
// Clear out the part below the main diagonal and scale the main
|
|
// diagonal to be 1.
|
|
for r := 0; r < rows; r++ {
|
|
// If the element on the diagonal is 0, find a row below
|
|
// that has a non-zero and swap them.
|
|
if m[r][r] == 0 {
|
|
for rowBelow := r + 1; rowBelow < rows; rowBelow++ {
|
|
if m[rowBelow][r] != 0 {
|
|
m.SwapRows(r, rowBelow)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
// If we couldn't find one, the matrix is singular.
|
|
if m[r][r] == 0 {
|
|
return errSingular
|
|
}
|
|
// Scale to 1.
|
|
if m[r][r] != 1 {
|
|
scale := galDivide(1, m[r][r])
|
|
for c := 0; c < columns; c++ {
|
|
m[r][c] = galMultiply(m[r][c], scale)
|
|
}
|
|
}
|
|
// Make everything below the 1 be a 0 by subtracting
|
|
// a multiple of it. (Subtraction and addition are
|
|
// both exclusive or in the Galois field.)
|
|
for rowBelow := r + 1; rowBelow < rows; rowBelow++ {
|
|
if m[rowBelow][r] != 0 {
|
|
scale := m[rowBelow][r]
|
|
for c := 0; c < columns; c++ {
|
|
m[rowBelow][c] ^= galMultiply(scale, m[r][c])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now clear the part above the main diagonal.
|
|
for d := 0; d < rows; d++ {
|
|
for rowAbove := 0; rowAbove < d; rowAbove++ {
|
|
if m[rowAbove][d] != 0 {
|
|
scale := m[rowAbove][d]
|
|
for c := 0; c < columns; c++ {
|
|
m[rowAbove][c] ^= galMultiply(scale, m[d][c])
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Create a Vandermonde matrix, which is guaranteed to have the
|
|
// property that any subset of rows that forms a square matrix
|
|
// is invertible.
|
|
func vandermonde(rows, cols int) (matrix, error) {
|
|
result, err := newMatrix(rows, cols)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
for r, row := range result {
|
|
for c := range row {
|
|
result[r][c] = galExp(byte(r), c)
|
|
}
|
|
}
|
|
return result, nil
|
|
}
|