mirror of
https://github.com/minio/minio.git
synced 2025-01-16 01:03:15 -05:00
b48bbe08b2
to track the replication transfer rate across different nodes, number of active workers in use and in-queue stats to get an idea of the current workload. This PR also adds replication metrics to the site replication status API. For site replication, prometheus metrics are no longer at the bucket level - but at the cluster level. Add prometheus metric to track credential errors since uptime
382 lines
9.5 KiB
Go
382 lines
9.5 KiB
Go
// Copyright (c) 2015-2023 MinIO, Inc.
|
|
//
|
|
// This file is part of MinIO Object Storage stack
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Affero General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package cmd
|
|
|
|
import (
|
|
"fmt"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/rcrowley/go-metrics"
|
|
)
|
|
|
|
//go:generate msgp -file $GOFILE
|
|
|
|
const (
|
|
// beta is the weight used to calculate exponential moving average
|
|
beta = 0.1 // Number of averages considered = 1/(1-beta)
|
|
)
|
|
|
|
// rateMeasurement captures the transfer details for one bucket/target
|
|
//msgp:ignore rateMeasurement
|
|
|
|
type rateMeasurement struct {
|
|
lock sync.Mutex
|
|
bytesSinceLastWindow uint64 // Total bytes since last window was processed
|
|
startTime time.Time // Start time for window
|
|
expMovingAvg float64 // Previously calculated exponential moving average
|
|
}
|
|
|
|
// newRateMeasurement creates a new instance of the measurement with the initial start time.
|
|
func newRateMeasurement(initTime time.Time) *rateMeasurement {
|
|
return &rateMeasurement{
|
|
startTime: initTime,
|
|
}
|
|
}
|
|
|
|
// incrementBytes add bytes reported for a bucket/target.
|
|
func (m *rateMeasurement) incrementBytes(bytes uint64) {
|
|
atomic.AddUint64(&m.bytesSinceLastWindow, bytes)
|
|
}
|
|
|
|
// updateExponentialMovingAverage processes the measurements captured so far.
|
|
func (m *rateMeasurement) updateExponentialMovingAverage(endTime time.Time) {
|
|
// Calculate aggregate avg bandwidth and exp window avg
|
|
m.lock.Lock()
|
|
defer func() {
|
|
m.startTime = endTime
|
|
m.lock.Unlock()
|
|
}()
|
|
|
|
if m.startTime.IsZero() {
|
|
return
|
|
}
|
|
|
|
if endTime.Before(m.startTime) {
|
|
return
|
|
}
|
|
|
|
duration := endTime.Sub(m.startTime)
|
|
|
|
bytesSinceLastWindow := atomic.SwapUint64(&m.bytesSinceLastWindow, 0)
|
|
|
|
if m.expMovingAvg == 0 {
|
|
// Should address initial calculation and should be fine for resuming from 0
|
|
m.expMovingAvg = float64(bytesSinceLastWindow) / duration.Seconds()
|
|
return
|
|
}
|
|
|
|
increment := float64(bytesSinceLastWindow) / duration.Seconds()
|
|
m.expMovingAvg = exponentialMovingAverage(beta, m.expMovingAvg, increment)
|
|
}
|
|
|
|
// exponentialMovingAverage calculates the exponential moving average
|
|
func exponentialMovingAverage(beta, previousAvg, incrementAvg float64) float64 {
|
|
return (1-beta)*incrementAvg + beta*previousAvg
|
|
}
|
|
|
|
// getExpMovingAvgBytesPerSecond returns the exponential moving average for the bucket/target in bytes
|
|
func (m *rateMeasurement) getExpMovingAvgBytesPerSecond() float64 {
|
|
m.lock.Lock()
|
|
defer m.lock.Unlock()
|
|
return m.expMovingAvg
|
|
}
|
|
|
|
// ActiveWorkerStat is stat for active replication workers
|
|
type ActiveWorkerStat struct {
|
|
Curr int `json:"curr"`
|
|
Avg float32 `json:"avg"`
|
|
Max int `json:"max"`
|
|
hist metrics.Histogram
|
|
}
|
|
|
|
func newActiveWorkerStat(r metrics.Registry) *ActiveWorkerStat {
|
|
h := metrics.NewHistogram(metrics.NewUniformSample(100))
|
|
r.Register("replication.active_workers", h)
|
|
return &ActiveWorkerStat{
|
|
hist: h,
|
|
}
|
|
}
|
|
|
|
// update curr and max workers;
|
|
func (a *ActiveWorkerStat) update() {
|
|
if a == nil {
|
|
return
|
|
}
|
|
a.Curr = globalReplicationPool.ActiveWorkers()
|
|
a.hist.Update(int64(a.Curr))
|
|
a.Avg = float32(a.hist.Mean())
|
|
a.Max = int(a.hist.Max())
|
|
}
|
|
|
|
func (a *ActiveWorkerStat) get() ActiveWorkerStat {
|
|
w := ActiveWorkerStat{
|
|
Curr: a.Curr,
|
|
Avg: a.Avg,
|
|
Max: a.Max,
|
|
}
|
|
return w
|
|
}
|
|
|
|
// QStat holds queue stats for replication
|
|
type QStat struct {
|
|
Count float64 `json:"count"`
|
|
Bytes float64 `json:"bytes"`
|
|
}
|
|
|
|
func (q *QStat) add(o QStat) QStat {
|
|
return QStat{Bytes: q.Bytes + o.Bytes, Count: q.Count + o.Count}
|
|
}
|
|
|
|
// InQueueMetric holds queue stats for replication
|
|
type InQueueMetric struct {
|
|
Curr QStat `json:"curr" msg:"cq"`
|
|
Avg QStat `json:"avg" msg:"aq"`
|
|
Max QStat `json:"max" msg:"pq"`
|
|
}
|
|
|
|
func (qm InQueueMetric) merge(o InQueueMetric) InQueueMetric {
|
|
return InQueueMetric{
|
|
Curr: qm.Curr.add(o.Curr),
|
|
Avg: qm.Avg.add(o.Avg),
|
|
Max: qm.Max.add(o.Max),
|
|
}
|
|
}
|
|
|
|
type queueCache struct {
|
|
srQueueStats InQueueStats
|
|
bucketStats map[string]InQueueStats
|
|
sync.RWMutex // mutex for queue stats
|
|
}
|
|
|
|
func newQueueCache(r metrics.Registry) queueCache {
|
|
return queueCache{
|
|
bucketStats: make(map[string]InQueueStats),
|
|
srQueueStats: newInQueueStats(r, "site"),
|
|
}
|
|
}
|
|
|
|
func (q *queueCache) update() {
|
|
q.Lock()
|
|
defer q.Unlock()
|
|
q.srQueueStats.update()
|
|
for _, s := range q.bucketStats {
|
|
s.update()
|
|
}
|
|
}
|
|
|
|
func (q *queueCache) getBucketStats(bucket string) InQueueMetric {
|
|
q.RLock()
|
|
defer q.RUnlock()
|
|
v, ok := q.bucketStats[bucket]
|
|
if !ok {
|
|
return InQueueMetric{}
|
|
}
|
|
return InQueueMetric{
|
|
Curr: QStat{Bytes: float64(v.nowBytes), Count: float64(v.nowCount)},
|
|
Max: QStat{Bytes: float64(v.histBytes.Max()), Count: float64(v.histCounts.Max())},
|
|
Avg: QStat{Bytes: v.histBytes.Mean(), Count: v.histCounts.Mean()},
|
|
}
|
|
}
|
|
|
|
func (q *queueCache) getSiteStats() InQueueMetric {
|
|
q.RLock()
|
|
defer q.RUnlock()
|
|
v := q.srQueueStats
|
|
return InQueueMetric{
|
|
Curr: QStat{Bytes: float64(v.nowBytes), Count: float64(v.nowCount)},
|
|
Max: QStat{Bytes: float64(v.histBytes.Max()), Count: float64(v.histCounts.Max())},
|
|
Avg: QStat{Bytes: v.histBytes.Mean(), Count: v.histCounts.Mean()},
|
|
}
|
|
}
|
|
|
|
// InQueueStats holds queue stats for replication
|
|
type InQueueStats struct {
|
|
nowBytes int64 `json:"-"`
|
|
nowCount int64 `json:"-"`
|
|
histCounts metrics.Histogram
|
|
histBytes metrics.Histogram
|
|
}
|
|
|
|
func newInQueueStats(r metrics.Registry, lbl string) InQueueStats {
|
|
histCounts := metrics.NewHistogram(metrics.NewUniformSample(100))
|
|
histBytes := metrics.NewHistogram(metrics.NewUniformSample(100))
|
|
|
|
r.Register("replication.queue.counts."+lbl, histCounts)
|
|
r.Register("replication.queue.bytes."+lbl, histBytes)
|
|
|
|
return InQueueStats{
|
|
histCounts: histCounts,
|
|
histBytes: histBytes,
|
|
}
|
|
}
|
|
|
|
func (q *InQueueStats) update() {
|
|
q.histBytes.Update(atomic.LoadInt64(&q.nowBytes))
|
|
q.histCounts.Update(atomic.LoadInt64(&q.nowCount))
|
|
}
|
|
|
|
// XferStats has transfer stats for replication
|
|
type XferStats struct {
|
|
Curr float64 `json:"currRate" msg:"cr"`
|
|
Avg float64 `json:"avgRate" msg:"av"`
|
|
Peak float64 `json:"peakRate" msg:"p"`
|
|
N int64 `json:"n" msg:"n"`
|
|
measure *rateMeasurement `json:"-"`
|
|
sma *SMA `json:"-"`
|
|
}
|
|
|
|
// Clone returns a copy of XferStats
|
|
func (rx *XferStats) Clone() *XferStats {
|
|
curr := rx.curr()
|
|
peak := rx.Peak
|
|
if curr > peak {
|
|
peak = curr
|
|
}
|
|
return &XferStats{
|
|
Curr: curr,
|
|
Avg: rx.Avg,
|
|
Peak: peak,
|
|
N: rx.N,
|
|
measure: rx.measure,
|
|
}
|
|
}
|
|
|
|
func newXferStats() *XferStats {
|
|
return &XferStats{
|
|
measure: newRateMeasurement(time.Now()),
|
|
sma: newSMA(50),
|
|
}
|
|
}
|
|
|
|
func (rx *XferStats) String() string {
|
|
return fmt.Sprintf("curr=%f avg=%f, peak=%f", rx.curr(), rx.Avg, rx.Peak)
|
|
}
|
|
|
|
func (rx *XferStats) curr() float64 {
|
|
if rx.measure == nil {
|
|
return 0.0
|
|
}
|
|
return rx.measure.getExpMovingAvgBytesPerSecond()
|
|
}
|
|
|
|
func (rx *XferStats) merge(o XferStats) XferStats {
|
|
curr := calcAvg(rx.curr(), o.curr(), rx.N, o.N)
|
|
peak := rx.Peak
|
|
if o.Peak > peak {
|
|
peak = o.Peak
|
|
}
|
|
if curr > peak {
|
|
peak = curr
|
|
}
|
|
return XferStats{
|
|
Avg: calcAvg(rx.Avg, o.Avg, rx.N, o.N),
|
|
Peak: peak,
|
|
Curr: curr,
|
|
measure: rx.measure,
|
|
N: rx.N + o.N,
|
|
}
|
|
}
|
|
|
|
func calcAvg(x, y float64, n1, n2 int64) float64 {
|
|
if n1+n2 == 0 {
|
|
return 0
|
|
}
|
|
avg := (x*float64(n1) + y*float64(n2)) / float64(n1+n2)
|
|
return avg
|
|
}
|
|
|
|
// Add a new transfer
|
|
func (rx *XferStats) addSize(sz int64, t time.Duration) {
|
|
if rx.measure == nil {
|
|
rx.measure = newRateMeasurement(time.Now())
|
|
}
|
|
rx.measure.incrementBytes(uint64(sz))
|
|
rx.Curr = rx.measure.getExpMovingAvgBytesPerSecond()
|
|
rx.sma.addSample(rx.Curr)
|
|
rx.Avg = rx.sma.simpleMovingAvg()
|
|
if rx.Curr > rx.Peak {
|
|
rx.Peak = rx.Curr
|
|
}
|
|
rx.N++
|
|
}
|
|
|
|
// ReplicationMRFStats holds stats of MRF backlog saved to disk in the last 5 minutes
|
|
// and number of entries that failed replication after 3 retries
|
|
type ReplicationMRFStats struct {
|
|
LastFailedCount uint64 `json:"failedCount_last5min"`
|
|
// Count of unreplicated entries that were dropped after MRF retry limit reached since cluster start.
|
|
TotalDroppedCount uint64 `json:"droppedCount_since_uptime"`
|
|
// Bytes of unreplicated entries that were dropped after MRF retry limit reached since cluster start.
|
|
TotalDroppedBytes uint64 `json:"droppedBytes_since_uptime"`
|
|
}
|
|
|
|
// SMA struct for calculating simple moving average
|
|
type SMA struct {
|
|
buf []float64
|
|
window int // len of buf
|
|
idx int // current index in buf
|
|
CAvg float64 // cumulative average
|
|
prevSMA float64
|
|
filledBuf bool
|
|
}
|
|
|
|
func newSMA(len int) *SMA {
|
|
if len <= 0 {
|
|
len = defaultWindowSize
|
|
}
|
|
return &SMA{
|
|
buf: make([]float64, len),
|
|
window: len,
|
|
idx: 0,
|
|
}
|
|
}
|
|
|
|
func (s *SMA) addSample(next float64) {
|
|
prev := s.buf[s.idx]
|
|
s.buf[s.idx] = next
|
|
|
|
if s.filledBuf {
|
|
s.prevSMA += (next - prev) / float64(s.window)
|
|
s.CAvg += (next - s.CAvg) / float64(s.window)
|
|
} else {
|
|
s.CAvg = s.simpleMovingAvg()
|
|
s.prevSMA = s.CAvg
|
|
}
|
|
if s.idx == s.window-1 {
|
|
s.filledBuf = true
|
|
}
|
|
s.idx = (s.idx + 1) % s.window
|
|
}
|
|
|
|
func (s *SMA) simpleMovingAvg() float64 {
|
|
if s.filledBuf {
|
|
return s.prevSMA
|
|
}
|
|
var tot float64
|
|
for _, r := range s.buf {
|
|
tot += r
|
|
}
|
|
return tot / float64(s.idx+1)
|
|
}
|
|
|
|
const (
|
|
defaultWindowSize = 10
|
|
)
|