minio/pkg/erasure/ec_minio_encode.c

60 lines
1.9 KiB
C

/*
* Minimalist Object Storage, (C) 2014 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdio.h>
#include "ec_isal-l.h"
#include "ec_minio_common.h"
/*
Generate encode matrix during the encoding phase
*/
int32_t minio_init_encoder (int technique, int k, int m,
unsigned char **encode_matrix,
unsigned char **encode_tbls)
{
size_t encode_matrix_size;
size_t encode_tbls_size;
unsigned char *tmp_matrix;
unsigned char *tmp_tbls;
tmp_matrix = (unsigned char *) malloc (k * (k + m));
tmp_tbls = (unsigned char *) malloc (k * (k + m) * 32);
if (technique == 0) {
/*
Commonly used method for choosing coefficients in erasure
encoding but does not guarantee invertable for every sub
matrix. For large k it is possible to find cases where the
decode matrix chosen from sources and parity not in erasure
are not invertable. Users may want to adjust for k > 5.
-- Intel
*/
gf_gen_rs_matrix (tmp_matrix, k + m, k);
} else if (technique == 1) {
gf_gen_cauchy1_matrix (tmp_matrix, k + m, k);
}
ec_init_tables(k, m, &tmp_matrix[k * k], tmp_tbls);
*encode_matrix = tmp_matrix;
*encode_tbls = tmp_tbls;
return 0;
}