mirror of
https://github.com/minio/minio.git
synced 2025-01-12 07:23:23 -05:00
e95c0bb913
This PR changes the behavior of DecryptRequest. Instead of returning `object-tampered` if the client provided key is wrong DecryptRequest will return `access-denied`. This is AWS S3 behavior. Fixes #5202
340 lines
14 KiB
Go
340 lines
14 KiB
Go
/*
|
|
* Minio Cloud Storage, (C) 2017 Minio, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package cmd
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/md5"
|
|
"crypto/rand"
|
|
"encoding/base64"
|
|
"errors"
|
|
"io"
|
|
"net/http"
|
|
|
|
sha256 "github.com/minio/sha256-simd"
|
|
"github.com/minio/sio"
|
|
)
|
|
|
|
var (
|
|
// AWS errors for invalid SSE-C requests.
|
|
errInsecureSSERequest = errors.New("Requests specifying Server Side Encryption with Customer provided keys must be made over a secure connection")
|
|
errEncryptedObject = errors.New("The object was stored using a form of Server Side Encryption. The correct parameters must be provided to retrieve the object")
|
|
errInvalidSSEAlgorithm = errors.New("Requests specifying Server Side Encryption with Customer provided keys must provide a valid encryption algorithm")
|
|
errMissingSSEKey = errors.New("Requests specifying Server Side Encryption with Customer provided keys must provide an appropriate secret key")
|
|
errInvalidSSEKey = errors.New("The secret key was invalid for the specified algorithm")
|
|
errMissingSSEKeyMD5 = errors.New("Requests specifying Server Side Encryption with Customer provided keys must provide the client calculated MD5 of the secret key")
|
|
errSSEKeyMD5Mismatch = errors.New("The calculated MD5 hash of the key did not match the hash that was provided")
|
|
errSSEKeyMismatch = errors.New("The client provided key does not match the key provided when the object was encrypted") // this msg is not shown to the client
|
|
|
|
// Additional Minio errors for SSE-C requests.
|
|
errObjectTampered = errors.New("The requested object was modified and may be compromised")
|
|
)
|
|
|
|
const (
|
|
// SSECustomerAlgorithm is the AWS SSE-C algorithm HTTP header key.
|
|
SSECustomerAlgorithm = "X-Amz-Server-Side-Encryption-Customer-Algorithm"
|
|
// SSECustomerKey is the AWS SSE-C encryption key HTTP header key.
|
|
SSECustomerKey = "X-Amz-Server-Side-Encryption-Customer-Key"
|
|
// SSECustomerKeyMD5 is the AWS SSE-C encryption key MD5 HTTP header key.
|
|
SSECustomerKeyMD5 = "X-Amz-Server-Side-Encryption-Customer-Key-MD5"
|
|
)
|
|
|
|
const (
|
|
// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
|
|
// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
|
|
SSECustomerKeySize = 32
|
|
|
|
// SSECustomerAlgorithmAES256 the only valid S3 SSE-C encryption algorithm identifier.
|
|
SSECustomerAlgorithmAES256 = "AES256"
|
|
)
|
|
|
|
// SSE-C key derivation, key verification and key update:
|
|
// H: Hash function [32 = |H(m)|]
|
|
// AE: authenticated encryption scheme, AD: authenticated decryption scheme [m = AD(k, AE(k, m))]
|
|
//
|
|
// Key derivation:
|
|
// Input:
|
|
// key := 32 bytes # client provided key
|
|
// Re, Rm := 32 bytes, 32 bytes # uniformly random
|
|
//
|
|
// Seal:
|
|
// k := H(key || Re) # object encryption key
|
|
// r := H(Rm) # save as object metadata [ServerSideEncryptionIV]
|
|
// KeK := H(key || r) # key encryption key
|
|
// K := AE(KeK, k) # save as object metadata [ServerSideEncryptionSealedKey]
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Key verification:
|
|
// Input:
|
|
// key := 32 bytes # client provided key
|
|
// r := 32 bytes # object metadata [ServerSideEncryptionIV]
|
|
// K := 32 bytes # object metadata [ServerSideEncryptionSealedKey]
|
|
//
|
|
// Open:
|
|
// KeK := H(key || r) # key encryption key
|
|
// k := AD(Kek, K) # object encryption key
|
|
// -------------------------------------------------------------------------------------------------
|
|
// Key update:
|
|
// Input:
|
|
// key := 32 bytes # old client provided key
|
|
// key' := 32 bytes # new client provided key
|
|
// Rm := 32 bytes # uniformly random
|
|
// r := 32 bytes # object metadata [ServerSideEncryptionIV]
|
|
// K := 32 bytes # object metadata [ServerSideEncryptionSealedKey]
|
|
//
|
|
// Update:
|
|
// 1. open:
|
|
// KeK := H(key || r) # key encryption key
|
|
// k := AD(Kek, K) # object encryption key
|
|
// 2. seal:
|
|
// r' := H(Rm) # save as object metadata [ServerSideEncryptionIV]
|
|
// KeK' := H(key' || r') # new key encryption key
|
|
// K' := AE(KeK', k) # save as object metadata [ServerSideEncryptionSealedKey]
|
|
|
|
const (
|
|
// ServerSideEncryptionIV is a 32 byte randomly generated IV used to derive an
|
|
// unique key encryption key from the client provided key. The combination of this value
|
|
// and the client-provided key MUST be unique.
|
|
ServerSideEncryptionIV = ReservedMetadataPrefix + "Server-Side-Encryption-Iv"
|
|
|
|
// ServerSideEncryptionSealAlgorithm identifies a combination of a cryptographic hash function and
|
|
// an authenticated en/decryption scheme to seal the object encryption key.
|
|
ServerSideEncryptionSealAlgorithm = ReservedMetadataPrefix + "Server-Side-Encryption-Seal-Algorithm"
|
|
|
|
// ServerSideEncryptionSealedKey is the sealed object encryption key. The sealed key can be decrypted
|
|
// by the key encryption key derived from the client provided key and the server-side-encryption IV.
|
|
ServerSideEncryptionSealedKey = ReservedMetadataPrefix + "Server-Side-Encryption-Sealed-Key"
|
|
)
|
|
|
|
// SSESealAlgorithmDareSha256 specifies DARE as authenticated en/decryption scheme and SHA256 as cryptographic
|
|
// hash function.
|
|
const SSESealAlgorithmDareSha256 = "DARE-SHA256"
|
|
|
|
// IsSSECustomerRequest returns true if the given HTTP header
|
|
// contains server-side-encryption with customer provided key fields.
|
|
func IsSSECustomerRequest(header http.Header) bool {
|
|
return header.Get(SSECustomerAlgorithm) != "" || header.Get(SSECustomerKey) != "" || header.Get(SSECustomerKeyMD5) != ""
|
|
}
|
|
|
|
// ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
|
|
// It returns the client provided key on success.
|
|
func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
|
|
if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time
|
|
// we cannot use r.TLS == nil here because Go's http implementation reflects on
|
|
// the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn.
|
|
// Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package
|
|
// will always fail -> r.TLS is always nil even for TLS requests.
|
|
return nil, errInsecureSSERequest
|
|
}
|
|
header := r.Header
|
|
if algorithm := header.Get(SSECustomerAlgorithm); algorithm != SSECustomerAlgorithmAES256 {
|
|
return nil, errInvalidSSEAlgorithm
|
|
}
|
|
if header.Get(SSECustomerKey) == "" {
|
|
return nil, errMissingSSEKey
|
|
}
|
|
if header.Get(SSECustomerKeyMD5) == "" {
|
|
return nil, errMissingSSEKeyMD5
|
|
}
|
|
|
|
key, err = base64.StdEncoding.DecodeString(header.Get(SSECustomerKey))
|
|
if err != nil {
|
|
return nil, errInvalidSSEKey
|
|
}
|
|
header.Del(SSECustomerKey) // make sure we do not save the key by accident
|
|
|
|
if len(key) != SSECustomerKeySize {
|
|
return nil, errInvalidSSEKey
|
|
}
|
|
|
|
keyMD5, err := base64.StdEncoding.DecodeString(header.Get(SSECustomerKeyMD5))
|
|
if err != nil {
|
|
return nil, errSSEKeyMD5Mismatch
|
|
}
|
|
if md5Sum := md5.Sum(key); !bytes.Equal(md5Sum[:], keyMD5) {
|
|
return nil, errSSEKeyMD5Mismatch
|
|
}
|
|
return key, nil
|
|
}
|
|
|
|
// EncryptRequest takes the client provided content and encrypts the data
|
|
// with the client provided key. It also marks the object as client-side-encrypted
|
|
// and sets the correct headers.
|
|
func EncryptRequest(content io.Reader, r *http.Request, metadata map[string]string) (io.Reader, error) {
|
|
key, err := ParseSSECustomerRequest(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
|
|
|
|
// security notice:
|
|
// - If the first 32 bytes of the random value are ever repeated under the same client-provided
|
|
// key the encrypted object will not be tamper-proof. [ P(coll) ~= 1 / 2^(256 / 2)]
|
|
// - If the last 32 bytes of the random value are ever repeated under the same client-provided
|
|
// key an adversary may be able to extract the object encryption key. This depends on the
|
|
// authenticated en/decryption scheme. The DARE format will generate an 8 byte nonce which must
|
|
// be repeated in addition to reveal the object encryption key.
|
|
// [ P(coll) ~= 1 / 2^((256 + 64) / 2) ]
|
|
nonce := make([]byte, 64) // generate random values for key derivation
|
|
if _, err = io.ReadFull(rand.Reader, nonce); err != nil {
|
|
return nil, err
|
|
}
|
|
sha := sha256.New() // derive object encryption key
|
|
sha.Write(key)
|
|
sha.Write(nonce[:32])
|
|
objectEncryptionKey := sha.Sum(nil)
|
|
|
|
iv := sha256.Sum256(nonce[32:]) // derive key encryption key
|
|
sha = sha256.New()
|
|
sha.Write(key)
|
|
sha.Write(iv[:])
|
|
keyEncryptionKey := sha.Sum(nil)
|
|
|
|
sealedKey := bytes.NewBuffer(nil) // sealedKey := 16 byte header + 32 byte payload + 16 byte tag
|
|
n, err := sio.Encrypt(sealedKey, bytes.NewReader(objectEncryptionKey), sio.Config{
|
|
Key: keyEncryptionKey,
|
|
})
|
|
if n != 64 || err != nil {
|
|
return nil, errors.New("failed to seal object encryption key") // if this happens there's a bug in the code (may panic ?)
|
|
}
|
|
|
|
reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey})
|
|
if err != nil {
|
|
return nil, errInvalidSSEKey
|
|
}
|
|
|
|
metadata[ServerSideEncryptionIV] = base64.StdEncoding.EncodeToString(iv[:])
|
|
metadata[ServerSideEncryptionSealAlgorithm] = SSESealAlgorithmDareSha256
|
|
metadata[ServerSideEncryptionSealedKey] = base64.StdEncoding.EncodeToString(sealedKey.Bytes())
|
|
return reader, nil
|
|
}
|
|
|
|
// DecryptRequest decrypts the object with the client provided key. It also removes
|
|
// the client-side-encryption metadata from the object and sets the correct headers.
|
|
func DecryptRequest(client io.Writer, r *http.Request, metadata map[string]string) (io.WriteCloser, error) {
|
|
key, err := ParseSSECustomerRequest(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
|
|
|
|
if metadata[ServerSideEncryptionSealAlgorithm] != SSESealAlgorithmDareSha256 { // currently DARE-SHA256 is the only option
|
|
return nil, errObjectTampered
|
|
}
|
|
iv, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionIV])
|
|
if err != nil || len(iv) != 32 {
|
|
return nil, errObjectTampered
|
|
}
|
|
sealedKey, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionSealedKey])
|
|
if err != nil || len(sealedKey) != 64 {
|
|
return nil, errObjectTampered
|
|
}
|
|
|
|
sha := sha256.New() // derive key encryption key
|
|
sha.Write(key)
|
|
sha.Write(iv)
|
|
keyEncryptionKey := sha.Sum(nil)
|
|
|
|
objectEncryptionKey := bytes.NewBuffer(nil) // decrypt object encryption key
|
|
n, err := sio.Decrypt(objectEncryptionKey, bytes.NewReader(sealedKey), sio.Config{
|
|
Key: keyEncryptionKey,
|
|
})
|
|
if n != 32 || err != nil {
|
|
// Either the provided key does not match or the object was tampered.
|
|
// To provide strict AWS S3 compatibility we return: access denied.
|
|
return nil, errSSEKeyMismatch
|
|
}
|
|
|
|
writer, err := sio.DecryptWriter(client, sio.Config{Key: objectEncryptionKey.Bytes()})
|
|
if err != nil {
|
|
return nil, errInvalidSSEKey
|
|
}
|
|
|
|
delete(metadata, ServerSideEncryptionIV)
|
|
delete(metadata, ServerSideEncryptionSealAlgorithm)
|
|
delete(metadata, ServerSideEncryptionSealedKey)
|
|
return writer, nil
|
|
}
|
|
|
|
// IsEncrypted returns true if the object is marked as encrypted.
|
|
func (o *ObjectInfo) IsEncrypted() bool {
|
|
if _, ok := o.UserDefined[ServerSideEncryptionIV]; ok {
|
|
return true
|
|
}
|
|
if _, ok := o.UserDefined[ServerSideEncryptionSealAlgorithm]; ok {
|
|
return true
|
|
}
|
|
if _, ok := o.UserDefined[ServerSideEncryptionSealedKey]; ok {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// DecryptedSize returns the size of the object after decryption in bytes.
|
|
// It returns an error if the object is not encrypted or marked as encrypted
|
|
// but has an invalid size.
|
|
// DecryptedSize panics if the referred object is not encrypted.
|
|
func (o *ObjectInfo) DecryptedSize() (int64, error) {
|
|
if !o.IsEncrypted() {
|
|
panic("cannot compute decrypted size of an object which is not encrypted")
|
|
}
|
|
if o.Size == 0 {
|
|
return o.Size, nil
|
|
}
|
|
size := (o.Size / (32 + 64*1024)) * (64 * 1024)
|
|
if mod := o.Size % (32 + 64*1024); mod > 0 {
|
|
if mod < 33 {
|
|
return -1, errObjectTampered // object is not 0 size but smaller than the smallest valid encrypted object
|
|
}
|
|
size += mod - 32
|
|
}
|
|
return size, nil
|
|
}
|
|
|
|
// EncryptedSize returns the size of the object after encryption.
|
|
// An encrypted object is always larger than a plain object
|
|
// except for zero size objects.
|
|
func (o *ObjectInfo) EncryptedSize() int64 {
|
|
size := (o.Size / (64 * 1024)) * (32 + 64*1024)
|
|
if mod := o.Size % (64 * 1024); mod > 0 {
|
|
size += mod + 32
|
|
}
|
|
return size
|
|
}
|
|
|
|
// DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
|
|
// It fails if the object is encrypted and the HTTP headers don't contain
|
|
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
|
|
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
|
|
// decryption succeeded.
|
|
//
|
|
// DecryptObjectInfo also returns whether the object is encrypted or not.
|
|
func DecryptObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) {
|
|
if apiErr, encrypted = ErrNone, info.IsEncrypted(); !encrypted && IsSSECustomerRequest(headers) {
|
|
apiErr = ErrInvalidEncryptionParameters
|
|
} else if encrypted {
|
|
if !IsSSECustomerRequest(headers) {
|
|
apiErr = ErrSSEEncryptedObject
|
|
return
|
|
}
|
|
var err error
|
|
if info.Size, err = info.DecryptedSize(); err != nil {
|
|
apiErr = toAPIErrorCode(err)
|
|
}
|
|
}
|
|
return
|
|
}
|