// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package cmd import ( "bytes" "context" "encoding/binary" "errors" "math" "math/rand" "net/http" "os" "path" "strings" "sync" "time" "github.com/bits-and-blooms/bloom/v3" "github.com/minio/madmin-go" "github.com/minio/minio/internal/bucket/lifecycle" "github.com/minio/minio/internal/bucket/replication" "github.com/minio/minio/internal/color" "github.com/minio/minio/internal/config/heal" "github.com/minio/minio/internal/event" "github.com/minio/minio/internal/hash" "github.com/minio/minio/internal/logger" "github.com/minio/pkg/console" ) const ( dataScannerSleepPerFolder = time.Millisecond // Time to wait between folders. dataUsageUpdateDirCycles = 16 // Visit all folders every n cycles. dataScannerCompactLeastObject = 500 // Compact when there is less than this many objects in a branch. dataScannerCompactAtChildren = 10000 // Compact when there are this many children in a branch. dataScannerCompactAtFolders = dataScannerCompactAtChildren / 4 // Compact when this many subfolders in a single folder. dataScannerStartDelay = 1 * time.Minute // Time to wait on startup and between cycles. healDeleteDangling = true healFolderIncludeProb = 32 // Include a clean folder one in n cycles. healObjectSelectProb = 512 // Overall probability of a file being scanned; one in n. ) var ( globalHealConfig heal.Config dataScannerLeaderLockTimeout = newDynamicTimeout(30*time.Second, 10*time.Second) // Sleeper values are updated when config is loaded. scannerSleeper = newDynamicSleeper(10, 10*time.Second) scannerCycle = &safeDuration{ t: dataScannerStartDelay, } ) // initDataScanner will start the scanner in the background. func initDataScanner(ctx context.Context, objAPI ObjectLayer) { go runDataScanner(ctx, objAPI) } type safeDuration struct { sync.Mutex t time.Duration } func (s *safeDuration) Update(t time.Duration) { s.Lock() defer s.Unlock() s.t = t } func (s *safeDuration) Get() time.Duration { s.Lock() defer s.Unlock() return s.t } // runDataScanner will start a data scanner. // The function will block until the context is canceled. // There should only ever be one scanner running per cluster. func runDataScanner(pctx context.Context, objAPI ObjectLayer) { // Make sure only 1 scanner is running on the cluster. locker := objAPI.NewNSLock(minioMetaBucket, "runDataScanner.lock") var ctx context.Context r := rand.New(rand.NewSource(time.Now().UnixNano())) for { lkctx, err := locker.GetLock(pctx, dataScannerLeaderLockTimeout) if err != nil { time.Sleep(time.Duration(r.Float64() * float64(scannerCycle.Get()))) continue } ctx = lkctx.Context() defer lkctx.Cancel() break // No unlock for "leader" lock. } // Load current bloom cycle nextBloomCycle := intDataUpdateTracker.current() + 1 br, err := objAPI.GetObjectNInfo(ctx, dataUsageBucket, dataUsageBloomName, nil, http.Header{}, readLock, ObjectOptions{}) if err != nil { if !isErrObjectNotFound(err) && !isErrBucketNotFound(err) { logger.LogIf(ctx, err) } } else { if br.ObjInfo.Size == 8 { if err = binary.Read(br, binary.LittleEndian, &nextBloomCycle); err != nil { logger.LogIf(ctx, err) } } br.Close() } scannerTimer := time.NewTimer(scannerCycle.Get()) defer scannerTimer.Stop() for { select { case <-ctx.Done(): return case <-scannerTimer.C: // Reset the timer for next cycle. scannerTimer.Reset(scannerCycle.Get()) if intDataUpdateTracker.debug { console.Debugln("starting scanner cycle") } // Wait before starting next cycle and wait on startup. results := make(chan DataUsageInfo, 1) go storeDataUsageInBackend(ctx, objAPI, results) bf, err := globalNotificationSys.updateBloomFilter(ctx, nextBloomCycle) logger.LogIf(ctx, err) err = objAPI.NSScanner(ctx, bf, results, uint32(nextBloomCycle)) logger.LogIf(ctx, err) if err == nil { // Store new cycle... nextBloomCycle++ var tmp [8]byte binary.LittleEndian.PutUint64(tmp[:], nextBloomCycle) r, err := hash.NewReader(bytes.NewReader(tmp[:]), int64(len(tmp)), "", "", int64(len(tmp))) if err != nil { logger.LogIf(ctx, err) continue } _, err = objAPI.PutObject(ctx, dataUsageBucket, dataUsageBloomName, NewPutObjReader(r), ObjectOptions{}) if !isErrBucketNotFound(err) { logger.LogIf(ctx, err) } } } } } type cachedFolder struct { name string parent *dataUsageHash objectHealProbDiv uint32 } type folderScanner struct { root string getSize getSizeFn oldCache dataUsageCache newCache dataUsageCache updateCache dataUsageCache withFilter *bloomFilter dataUsageScannerDebug bool healFolderInclude uint32 // Include a clean folder one in n cycles. healObjectSelect uint32 // Do a heal check on an object once every n cycles. Must divide into healFolderInclude disks []StorageAPI // If set updates will be sent regularly to this channel. // Will not be closed when returned. updates chan<- dataUsageEntry lastUpdate time.Time } // Cache structure and compaction: // // A cache structure will be kept with a tree of usages. // The cache is a tree structure where each keeps track of its children. // // An uncompacted branch contains a count of the files only directly at the // branch level, and contains link to children branches or leaves. // // The leaves are "compacted" based on a number of properties. // A compacted leaf contains the totals of all files beneath it. // // A leaf is only scanned once every dataUsageUpdateDirCycles, // rarer if the bloom filter for the path is clean and no lifecycles are applied. // Skipped leaves have their totals transferred from the previous cycle. // // A clean leaf will be included once every healFolderIncludeProb for partial heal scans. // When selected there is a one in healObjectSelectProb that any object will be chosen for heal scan. // // Compaction happens when either: // // 1) The folder (and subfolders) contains less than dataScannerCompactLeastObject objects. // 2) The folder itself contains more than dataScannerCompactAtFolders folders. // 3) The folder only contains objects and no subfolders. // // A bucket root will never be compacted. // // Furthermore if a has more than dataScannerCompactAtChildren recursive children (uncompacted folders) // the tree will be recursively scanned and the branches with the least number of objects will be // compacted until the limit is reached. // // This ensures that any branch will never contain an unreasonable amount of other branches, // and also that small branches with few objects don't take up unreasonable amounts of space. // This keeps the cache size at a reasonable size for all buckets. // // Whenever a branch is scanned, it is assumed that it will be un-compacted // before it hits any of the above limits. // This will make the branch rebalance itself when scanned if the distribution of objects has changed. // scanDataFolder will scanner the basepath+cache.Info.Name and return an updated cache. // The returned cache will always be valid, but may not be updated from the existing. // Before each operation sleepDuration is called which can be used to temporarily halt the scanner. // If the supplied context is canceled the function will return at the first chance. func scanDataFolder(ctx context.Context, basePath string, cache dataUsageCache, getSize getSizeFn) (dataUsageCache, error) { t := UTCNow() logPrefix := color.Green("data-usage: ") logSuffix := color.Blue("- %v + %v", basePath, cache.Info.Name) if intDataUpdateTracker.debug { defer func() { console.Debugf(logPrefix+" Scanner time: %v %s\n", time.Since(t), logSuffix) }() } switch cache.Info.Name { case "", dataUsageRoot: return cache, errors.New("internal error: root scan attempted") } s := folderScanner{ root: basePath, getSize: getSize, oldCache: cache, newCache: dataUsageCache{Info: cache.Info}, updateCache: dataUsageCache{Info: cache.Info}, dataUsageScannerDebug: intDataUpdateTracker.debug, healFolderInclude: 0, healObjectSelect: 0, updates: cache.Info.updates, } // Add disks for set healing. if len(cache.Disks) > 0 { objAPI, ok := newObjectLayerFn().(*erasureServerPools) if ok { s.disks = objAPI.GetDisksID(cache.Disks...) if len(s.disks) != len(cache.Disks) { console.Debugf(logPrefix+"Missing disks, want %d, found %d. Cannot heal. %s\n", len(cache.Disks), len(s.disks), logSuffix) s.disks = s.disks[:0] } } } // Enable healing in XL mode. if globalIsErasure && !cache.Info.SkipHealing { // Include a clean folder one in n cycles. s.healFolderInclude = healFolderIncludeProb // Do a heal check on an object once every n cycles. Must divide into healFolderInclude s.healObjectSelect = healObjectSelectProb } if len(cache.Info.BloomFilter) > 0 { s.withFilter = &bloomFilter{BloomFilter: &bloom.BloomFilter{}} _, err := s.withFilter.ReadFrom(bytes.NewReader(cache.Info.BloomFilter)) if err != nil { logger.LogIf(ctx, err, logPrefix+"Error reading bloom filter") s.withFilter = nil } } if s.dataUsageScannerDebug { console.Debugf(logPrefix+"Start scanning. Bloom filter: %v %s\n", s.withFilter != nil, logSuffix) } done := ctx.Done() if s.dataUsageScannerDebug { console.Debugf(logPrefix+"Cycle: %v, Entries: %v %s\n", cache.Info.NextCycle, len(cache.Cache), logSuffix) } // Read top level in bucket. select { case <-done: return cache, ctx.Err() default: } root := dataUsageEntry{} folder := cachedFolder{name: cache.Info.Name, objectHealProbDiv: 1} err := s.scanFolder(ctx, folder, &root) if err != nil { // No useful information... return cache, err } if s.dataUsageScannerDebug { console.Debugf(logPrefix+"Finished scanner, %v entries (%+v) %s \n", len(s.newCache.Cache), *s.newCache.sizeRecursive(s.newCache.Info.Name), logSuffix) } s.newCache.Info.LastUpdate = UTCNow() s.newCache.Info.NextCycle = cache.Info.NextCycle return s.newCache, nil } // sendUpdate() should be called on a regular basis when the newCache contains more recent total than previously. // May or may not send an update upstream. func (f *folderScanner) sendUpdate() { // Send at most an update every minute. if f.updates == nil || time.Since(f.lastUpdate) < time.Minute { return } if flat := f.updateCache.sizeRecursive(f.newCache.Info.Name); flat != nil { select { case f.updates <- *flat: default: } f.lastUpdate = time.Now() } } // scanFolder will scan the provided folder. // Files found in the folders will be added to f.newCache. // If final is provided folders will be put into f.newFolders or f.existingFolders. // If final is not provided the folders found are returned from the function. func (f *folderScanner) scanFolder(ctx context.Context, folder cachedFolder, into *dataUsageEntry) error { done := ctx.Done() scannerLogPrefix := color.Green("folder-scanner:") thisHash := hashPath(folder.name) // Store initial compaction state. wasCompacted := into.Compacted for { select { case <-done: return ctx.Err() default: } existing, ok := f.oldCache.Cache[thisHash.Key()] var abandonedChildren dataUsageHashMap if !into.Compacted { abandonedChildren = f.oldCache.findChildrenCopy(thisHash) } // If there are lifecycle rules for the prefix, remove the filter. filter := f.withFilter _, prefix := path2BucketObjectWithBasePath(f.root, folder.name) var activeLifeCycle *lifecycle.Lifecycle if f.oldCache.Info.lifeCycle != nil && f.oldCache.Info.lifeCycle.HasActiveRules(prefix, true) { if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" Prefix %q has active rules\n", prefix) } activeLifeCycle = f.oldCache.Info.lifeCycle filter = nil } // If there are replication rules for the prefix, remove the filter. var replicationCfg replicationConfig if !f.oldCache.Info.replication.Empty() && f.oldCache.Info.replication.Config.HasActiveRules(prefix, true) { replicationCfg = f.oldCache.Info.replication filter = nil } // Check if we can skip it due to bloom filter... if filter != nil && ok && existing.Compacted { // If folder isn't in filter and we have data, skip it completely. if folder.name != dataUsageRoot && !filter.containsDir(folder.name) { if f.healObjectSelect == 0 || !thisHash.mod(f.oldCache.Info.NextCycle, f.healFolderInclude/folder.objectHealProbDiv) { f.newCache.copyWithChildren(&f.oldCache, thisHash, folder.parent) f.updateCache.copyWithChildren(&f.oldCache, thisHash, folder.parent) if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" Skipping non-updated folder: %v\n", folder.name) } return nil } if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" Adding non-updated folder to heal check: %v\n", folder.name) } // If probability was already scannerHealFolderInclude, keep it. folder.objectHealProbDiv = f.healFolderInclude } } scannerSleeper.Sleep(ctx, dataScannerSleepPerFolder) var existingFolders, newFolders []cachedFolder var foundObjects bool err := readDirFn(path.Join(f.root, folder.name), func(entName string, typ os.FileMode) error { // Parse entName = pathClean(path.Join(folder.name, entName)) if entName == "" || entName == folder.name { if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" no entity (%s,%s)\n", f.root, entName) } return nil } bucket, prefix := path2BucketObjectWithBasePath(f.root, entName) if bucket == "" { if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" no bucket (%s,%s)\n", f.root, entName) } return errDoneForNow } if isReservedOrInvalidBucket(bucket, false) { if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" invalid bucket: %v, entry: %v\n", bucket, entName) } return errDoneForNow } select { case <-done: return errDoneForNow default: } if typ&os.ModeDir != 0 { h := hashPath(entName) _, exists := f.oldCache.Cache[h.Key()] if h == thisHash { return nil } this := cachedFolder{name: entName, parent: &thisHash, objectHealProbDiv: folder.objectHealProbDiv} delete(abandonedChildren, h.Key()) // h.Key() already accounted for. if exists { existingFolders = append(existingFolders, this) f.updateCache.copyWithChildren(&f.oldCache, h, &thisHash) } else { newFolders = append(newFolders, this) } return nil } // Dynamic time delay. wait := scannerSleeper.Timer(ctx) // Get file size, ignore errors. item := scannerItem{ Path: path.Join(f.root, entName), Typ: typ, bucket: bucket, prefix: path.Dir(prefix), objectName: path.Base(entName), debug: f.dataUsageScannerDebug, lifeCycle: activeLifeCycle, replication: replicationCfg, heal: thisHash.mod(f.oldCache.Info.NextCycle, f.healObjectSelect/folder.objectHealProbDiv) && globalIsErasure, } // if the drive belongs to an erasure set // that is already being healed, skip the // healing attempt on this drive. item.heal = item.heal && f.healObjectSelect > 0 sz, err := f.getSize(item) if err != nil { wait() // wait to proceed to next entry. if err != errSkipFile && f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" getSize \"%v/%v\" returned err: %v\n", bucket, item.objectPath(), err) } return nil } // successfully read means we have a valid object. foundObjects = true // Remove filename i.e is the meta file to construct object name item.transformMetaDir() // Object already accounted for, remove from heal map, // simply because getSize() function already heals the // object. delete(abandonedChildren, path.Join(item.bucket, item.objectPath())) into.addSizes(sz) into.Objects++ wait() // wait to proceed to next entry. return nil }) if err != nil { return err } if foundObjects && globalIsErasure { // If we found an object in erasure mode, we skip subdirs (only datadirs)... break } // If we have many subfolders, compact ourself. if !into.Compacted && f.newCache.Info.Name != folder.name && len(existingFolders)+len(newFolders) >= dataScannerCompactAtFolders { into.Compacted = true newFolders = append(newFolders, existingFolders...) existingFolders = nil if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" Preemptively compacting: %v, entries: %v\n", folder.name, len(existingFolders)+len(newFolders)) } } scanFolder := func(folder cachedFolder) { if contextCanceled(ctx) { return } dst := into if !into.Compacted { dst = &dataUsageEntry{Compacted: false} } if err := f.scanFolder(ctx, folder, dst); err != nil { logger.LogIf(ctx, err) return } if !into.Compacted { h := dataUsageHash(folder.name) into.addChild(h) // We scanned a folder, optionally send update. f.updateCache.deleteRecursive(h) f.updateCache.copyWithChildren(&f.newCache, h, folder.parent) f.sendUpdate() } } // Transfer existing if !into.Compacted { for _, folder := range existingFolders { h := hashPath(folder.name) f.updateCache.copyWithChildren(&f.oldCache, h, folder.parent) } } // Scan new... for _, folder := range newFolders { h := hashPath(folder.name) // Add new folders to the update tree so totals update for these. if !into.Compacted { var foundAny bool parent := thisHash for parent != hashPath(f.updateCache.Info.Name) { e := f.updateCache.find(parent.Key()) if e == nil || e.Compacted { foundAny = true break } if next := f.updateCache.searchParent(parent); next == nil { foundAny = true break } else { parent = *next } } if !foundAny { // Add non-compacted empty entry. f.updateCache.replaceHashed(h, &thisHash, dataUsageEntry{}) } } scanFolder(folder) // Add new folders if this is new and we don't have existing. if !into.Compacted { parent := f.updateCache.find(thisHash.Key()) if parent != nil && !parent.Compacted { f.updateCache.deleteRecursive(h) f.updateCache.copyWithChildren(&f.newCache, h, &thisHash) } } } // Scan existing... for _, folder := range existingFolders { h := hashPath(folder.name) // Check if we should skip scanning folder... // We can only skip if we are not indexing into a compacted destination // and the entry itself is compacted. if !into.Compacted && f.oldCache.isCompacted(h) { if !h.mod(f.oldCache.Info.NextCycle, dataUsageUpdateDirCycles) { if f.healObjectSelect == 0 || !h.mod(f.oldCache.Info.NextCycle, f.healFolderInclude/folder.objectHealProbDiv) { // Transfer and add as child... f.newCache.copyWithChildren(&f.oldCache, h, folder.parent) into.addChild(h) continue } folder.objectHealProbDiv = dataUsageUpdateDirCycles } } scanFolder(folder) } // Scan for healing if f.healObjectSelect == 0 || len(abandonedChildren) == 0 { // If we are not heal scanning, return now. break } objAPI, ok := newObjectLayerFn().(*erasureServerPools) if !ok || len(f.disks) == 0 { break } bgSeq, found := globalBackgroundHealState.getHealSequenceByToken(bgHealingUUID) if !found { break } // Whatever remains in 'abandonedChildren' are folders at this level // that existed in the previous run but wasn't found now. // // This may be because of 2 reasons: // // 1) The folder/object was deleted. // 2) We come from another disk and this disk missed the write. // // We therefore perform a heal check. // If that doesn't bring it back we remove the folder and assume it was deleted. // This means that the next run will not look for it. // How to resolve results. resolver := metadataResolutionParams{ dirQuorum: getReadQuorum(len(f.disks)), objQuorum: getReadQuorum(len(f.disks)), bucket: "", } healObjectsPrefix := color.Green("healObjects:") for k := range abandonedChildren { bucket, prefix := path2BucketObject(k) if f.dataUsageScannerDebug { console.Debugf(scannerLogPrefix+" checking disappeared folder: %v/%v\n", bucket, prefix) } if bucket != resolver.bucket { // Bucket might be missing as well with abandoned children. // make sure it is created first otherwise healing won't proceed // for objects. _, _ = objAPI.HealBucket(ctx, bucket, madmin.HealOpts{}) } resolver.bucket = bucket foundObjs := false ctx, cancel := context.WithCancel(ctx) err := listPathRaw(ctx, listPathRawOptions{ disks: f.disks, bucket: bucket, path: prefix, recursive: true, reportNotFound: true, minDisks: len(f.disks), // We want full consistency. // Weird, maybe transient error. agreed: func(entry metaCacheEntry) { if f.dataUsageScannerDebug { console.Debugf(healObjectsPrefix+" got agreement: %v\n", entry.name) } }, // Some disks have data for this. partial: func(entries metaCacheEntries, nAgreed int, errs []error) { if f.dataUsageScannerDebug { console.Debugf(healObjectsPrefix+" got partial, %d agreed, errs: %v\n", nAgreed, errs) } entry, ok := entries.resolve(&resolver) if !ok { // check if we can get one entry atleast // proceed to heal nonetheless, since // this object might be dangling. entry, _ = entries.firstFound() } if f.dataUsageScannerDebug { console.Debugf(healObjectsPrefix+" resolved to: %v, dir: %v\n", entry.name, entry.isDir()) } if entry.isDir() { return } // wait on timer per object. wait := scannerSleeper.Timer(ctx) // We got an entry which we should be able to heal. fiv, err := entry.fileInfoVersions(bucket) if err != nil { wait() err := bgSeq.queueHealTask(healSource{ bucket: bucket, object: entry.name, versionID: "", }, madmin.HealItemObject) logger.LogIf(ctx, err) foundObjs = foundObjs || err == nil return } for _, ver := range fiv.Versions { // Sleep and reset. wait() wait = scannerSleeper.Timer(ctx) err := bgSeq.queueHealTask(healSource{ bucket: bucket, object: fiv.Name, versionID: ver.VersionID, }, madmin.HealItemObject) logger.LogIf(ctx, err) foundObjs = foundObjs || err == nil } }, // Too many disks failed. finished: func(errs []error) { if f.dataUsageScannerDebug { console.Debugf(healObjectsPrefix+" too many errors: %v\n", errs) } cancel() }, }) if f.dataUsageScannerDebug && err != nil && err != errFileNotFound { console.Debugf(healObjectsPrefix+" checking returned value %v (%T)\n", err, err) } // Add unless healing returned an error. if foundObjs { this := cachedFolder{name: k, parent: &thisHash, objectHealProbDiv: 1} scanFolder(this) } } break } if !wasCompacted { f.newCache.replaceHashed(thisHash, folder.parent, *into) } if !into.Compacted && f.newCache.Info.Name != folder.name { flat := f.newCache.sizeRecursive(thisHash.Key()) flat.Compacted = true var compact bool if flat.Objects < dataScannerCompactLeastObject { if f.dataUsageScannerDebug && flat.Objects > 1 { // Disabled, rather chatty: //console.Debugf(scannerLogPrefix+" Only %d objects, compacting %s -> %+v\n", flat.Objects, folder.name, flat) } compact = true } else { // Compact if we only have objects as children... compact = true for k := range into.Children { if v, ok := f.newCache.Cache[k]; ok { if len(v.Children) > 0 || v.Objects > 1 { compact = false break } } } if f.dataUsageScannerDebug && compact { // Disabled, rather chatty: //console.Debugf(scannerLogPrefix+" Only objects (%d), compacting %s -> %+v\n", flat.Objects, folder.name, flat) } } if compact { f.newCache.deleteRecursive(thisHash) f.newCache.replaceHashed(thisHash, folder.parent, *flat) } } // Compact if too many children... if !into.Compacted { f.newCache.reduceChildrenOf(thisHash, dataScannerCompactAtChildren, f.newCache.Info.Name != folder.name) } if _, ok := f.updateCache.Cache[thisHash.Key()]; !wasCompacted && ok { // Replace if existed before. if flat := f.newCache.sizeRecursive(thisHash.Key()); flat != nil { f.updateCache.deleteRecursive(thisHash) f.updateCache.replaceHashed(thisHash, folder.parent, *flat) } } return nil } // scannerItem represents each file while walking. type scannerItem struct { Path string Typ os.FileMode bucket string // Bucket. prefix string // Only the prefix if any, does not have final object name. objectName string // Only the object name without prefixes. lifeCycle *lifecycle.Lifecycle replication replicationConfig heal bool // Has the object been selected for heal check? debug bool } type sizeSummary struct { totalSize int64 versions uint64 replicatedSize int64 pendingSize int64 failedSize int64 replicaSize int64 pendingCount uint64 failedCount uint64 replTargetStats map[string]replTargetSizeSummary } // replTargetSizeSummary holds summary of replication stats by target type replTargetSizeSummary struct { replicatedSize int64 pendingSize int64 failedSize int64 pendingCount uint64 failedCount uint64 } type getSizeFn func(item scannerItem) (sizeSummary, error) // transformMetaDir will transform a directory to prefix/file.ext func (i *scannerItem) transformMetaDir() { split := strings.Split(i.prefix, SlashSeparator) if len(split) > 1 { i.prefix = path.Join(split[:len(split)-1]...) } else { i.prefix = "" } // Object name is last element i.objectName = split[len(split)-1] } var applyActionsLogPrefix = color.Green("applyActions:") func (i *scannerItem) applyHealing(ctx context.Context, o ObjectLayer, oi ObjectInfo) (size int64) { if i.debug { if oi.VersionID != "" { console.Debugf(applyActionsLogPrefix+" heal checking: %v/%v v(%s)\n", i.bucket, i.objectPath(), oi.VersionID) } else { console.Debugf(applyActionsLogPrefix+" heal checking: %v/%v\n", i.bucket, i.objectPath()) } } healOpts := madmin.HealOpts{ Remove: healDeleteDangling, ScanMode: globalHealConfig.ScanMode(), } res, err := o.HealObject(ctx, i.bucket, i.objectPath(), oi.VersionID, healOpts) if err != nil && !errors.Is(err, NotImplemented{}) { logger.LogIf(ctx, err) return 0 } return res.ObjectSize } func (i *scannerItem) applyLifecycle(ctx context.Context, o ObjectLayer, oi ObjectInfo) (applied bool, size int64) { size, err := oi.GetActualSize() if i.debug { logger.LogIf(ctx, err) } if i.lifeCycle == nil { if i.debug { // disabled, very chatty: // console.Debugf(applyActionsLogPrefix+" no lifecycle rules to apply: %q\n", i.objectPath()) } return false, size } versionID := oi.VersionID action := i.lifeCycle.ComputeAction( lifecycle.ObjectOpts{ Name: i.objectPath(), UserTags: oi.UserTags, ModTime: oi.ModTime, VersionID: oi.VersionID, DeleteMarker: oi.DeleteMarker, IsLatest: oi.IsLatest, NumVersions: oi.NumVersions, SuccessorModTime: oi.SuccessorModTime, RestoreOngoing: oi.RestoreOngoing, RestoreExpires: oi.RestoreExpires, TransitionStatus: oi.TransitionedObject.Status, }) if i.debug { if versionID != "" { console.Debugf(applyActionsLogPrefix+" lifecycle: %q (version-id=%s), Initial scan: %v\n", i.objectPath(), versionID, action) } else { console.Debugf(applyActionsLogPrefix+" lifecycle: %q Initial scan: %v\n", i.objectPath(), action) } } switch action { case lifecycle.DeleteAction, lifecycle.DeleteVersionAction, lifecycle.DeleteRestoredAction, lifecycle.DeleteRestoredVersionAction: return applyLifecycleAction(action, oi), 0 case lifecycle.TransitionAction, lifecycle.TransitionVersionAction: return applyLifecycleAction(action, oi), size default: // No action. return false, size } } // applyTierObjSweep removes remote object pending deletion and the free-version // tracking this information. func (i *scannerItem) applyTierObjSweep(ctx context.Context, o ObjectLayer, oi ObjectInfo) { if !oi.TransitionedObject.FreeVersion { // nothing to be done return } ignoreNotFoundErr := func(err error) error { switch { case isErrVersionNotFound(err), isErrObjectNotFound(err): return nil } return err } // Remove the remote object err := deleteObjectFromRemoteTier(ctx, oi.TransitionedObject.Name, oi.TransitionedObject.VersionID, oi.TransitionedObject.Tier) if ignoreNotFoundErr(err) != nil { logger.LogIf(ctx, err) return } // Remove this free version _, err = o.DeleteObject(ctx, oi.Bucket, oi.Name, ObjectOptions{ VersionID: oi.VersionID, }) if err == nil { auditLogLifecycle(ctx, oi, ILMFreeVersionDelete) } if ignoreNotFoundErr(err) != nil { logger.LogIf(ctx, err) } } // applyActions will apply lifecycle checks on to a scanned item. // The resulting size on disk will always be returned. // The metadata will be compared to consensus on the object layer before any changes are applied. // If no metadata is supplied, -1 is returned if no action is taken. func (i *scannerItem) applyActions(ctx context.Context, o ObjectLayer, oi ObjectInfo, sizeS *sizeSummary) int64 { i.applyTierObjSweep(ctx, o, oi) applied, size := i.applyLifecycle(ctx, o, oi) // For instance, an applied lifecycle means we remove/transitioned an object // from the current deployment, which means we don't have to call healing // routine even if we are asked to do via heal flag. if !applied { if i.heal { size = i.applyHealing(ctx, o, oi) } // replicate only if lifecycle rules are not applied. i.healReplication(ctx, o, oi.Clone(), sizeS) } return size } func evalActionFromLifecycle(ctx context.Context, lc lifecycle.Lifecycle, obj ObjectInfo, debug bool) (action lifecycle.Action) { action = lc.ComputeAction(obj.ToLifecycleOpts()) if debug { console.Debugf(applyActionsLogPrefix+" lifecycle: Secondary scan: %v\n", action) } if action == lifecycle.NoneAction { return action } switch action { case lifecycle.DeleteVersionAction, lifecycle.DeleteRestoredVersionAction: // Defensive code, should never happen if obj.VersionID == "" { return lifecycle.NoneAction } if rcfg, _ := globalBucketObjectLockSys.Get(obj.Bucket); rcfg.LockEnabled { locked := enforceRetentionForDeletion(ctx, obj) if locked { if debug { if obj.VersionID != "" { console.Debugf(applyActionsLogPrefix+" lifecycle: %s v(%s) is locked, not deleting\n", obj.Name, obj.VersionID) } else { console.Debugf(applyActionsLogPrefix+" lifecycle: %s is locked, not deleting\n", obj.Name) } } return lifecycle.NoneAction } } } return action } func applyTransitionRule(obj ObjectInfo) bool { if obj.DeleteMarker { return false } globalTransitionState.queueTransitionTask(obj) return true } func applyExpiryOnTransitionedObject(ctx context.Context, objLayer ObjectLayer, obj ObjectInfo, restoredObject bool) bool { action := expireObj if restoredObject { action = expireRestoredObj } if err := expireTransitionedObject(ctx, objLayer, &obj, obj.ToLifecycleOpts(), action); err != nil { if isErrObjectNotFound(err) || isErrVersionNotFound(err) { return false } logger.LogIf(ctx, err) return false } // Notification already sent in *expireTransitionedObject*, just return 'true' here. return true } func applyExpiryOnNonTransitionedObjects(ctx context.Context, objLayer ObjectLayer, obj ObjectInfo, applyOnVersion bool) bool { opts := ObjectOptions{ Expiration: ExpirationOptions{Expire: true}, } if applyOnVersion { opts.VersionID = obj.VersionID } if opts.VersionID == "" { opts.Versioned = globalBucketVersioningSys.Enabled(obj.Bucket) } obj, err := objLayer.DeleteObject(ctx, obj.Bucket, obj.Name, opts) if err != nil { if isErrObjectNotFound(err) || isErrVersionNotFound(err) { return false } // Assume it is still there. logger.LogIf(ctx, err) return false } // Send audit for the lifecycle delete operation auditLogLifecycle(ctx, obj, ILMExpiry) eventName := event.ObjectRemovedDelete if obj.DeleteMarker { eventName = event.ObjectRemovedDeleteMarkerCreated } // Notify object deleted event. sendEvent(eventArgs{ EventName: eventName, BucketName: obj.Bucket, Object: obj, Host: "Internal: [ILM-EXPIRY]", }) return true } // Apply object, object version, restored object or restored object version action on the given object func applyExpiryRule(obj ObjectInfo, restoredObject, applyOnVersion bool) bool { globalExpiryState.queueExpiryTask(obj, restoredObject, applyOnVersion) return true } // Perform actions (removal or transitioning of objects), return true the action is successfully performed func applyLifecycleAction(action lifecycle.Action, obj ObjectInfo) (success bool) { switch action { case lifecycle.DeleteVersionAction, lifecycle.DeleteAction: success = applyExpiryRule(obj, false, action == lifecycle.DeleteVersionAction) case lifecycle.DeleteRestoredAction, lifecycle.DeleteRestoredVersionAction: success = applyExpiryRule(obj, true, action == lifecycle.DeleteRestoredVersionAction) case lifecycle.TransitionAction, lifecycle.TransitionVersionAction: success = applyTransitionRule(obj) } return } // objectPath returns the prefix and object name. func (i *scannerItem) objectPath() string { return path.Join(i.prefix, i.objectName) } // healReplication will heal a scanned item that has failed replication. func (i *scannerItem) healReplication(ctx context.Context, o ObjectLayer, oi ObjectInfo, sizeS *sizeSummary) { roi := getHealReplicateObjectInfo(oi, i.replication) if oi.DeleteMarker || !oi.VersionPurgeStatus.Empty() { // heal delete marker replication failure or versioned delete replication failure if oi.ReplicationStatus == replication.Pending || oi.ReplicationStatus == replication.Failed || oi.VersionPurgeStatus == Failed || oi.VersionPurgeStatus == Pending { i.healReplicationDeletes(ctx, o, roi) return } // if replication status is Complete on DeleteMarker and existing object resync required if roi.ExistingObjResync.mustResync() && (oi.ReplicationStatus == replication.Completed || oi.ReplicationStatus.Empty()) { i.healReplicationDeletes(ctx, o, roi) return } return } if roi.ExistingObjResync.mustResync() { roi.OpType = replication.ExistingObjectReplicationType } if roi.TargetStatuses != nil { if sizeS.replTargetStats == nil { sizeS.replTargetStats = make(map[string]replTargetSizeSummary) } for arn, tgtStatus := range roi.TargetStatuses { tgtSizeS, ok := sizeS.replTargetStats[arn] if !ok { tgtSizeS = replTargetSizeSummary{} } switch tgtStatus { case replication.Pending: tgtSizeS.pendingCount++ tgtSizeS.pendingSize += oi.Size sizeS.pendingCount++ sizeS.pendingSize += oi.Size case replication.Failed: tgtSizeS.failedSize += oi.Size tgtSizeS.failedCount++ sizeS.failedSize += oi.Size sizeS.failedCount++ case replication.Completed, "COMPLETE": tgtSizeS.replicatedSize += oi.Size sizeS.replicatedSize += oi.Size } sizeS.replTargetStats[arn] = tgtSizeS } } switch oi.ReplicationStatus { case replication.Pending, replication.Failed: globalReplicationPool.queueReplicaTask(roi) return case replication.Replica: sizeS.replicaSize += oi.Size } if roi.ExistingObjResync.mustResync() { globalReplicationPool.queueReplicaTask(roi) } } // healReplicationDeletes will heal a scanned deleted item that failed to replicate deletes. func (i *scannerItem) healReplicationDeletes(ctx context.Context, o ObjectLayer, roi ReplicateObjectInfo) { // handle soft delete and permanent delete failures here. if roi.DeleteMarker || !roi.VersionPurgeStatus.Empty() { versionID := "" dmVersionID := "" if roi.VersionPurgeStatus.Empty() { dmVersionID = roi.VersionID } else { versionID = roi.VersionID } doi := DeletedObjectReplicationInfo{ DeletedObject: DeletedObject{ ObjectName: roi.Name, DeleteMarkerVersionID: dmVersionID, VersionID: versionID, ReplicationState: roi.getReplicationState(roi.Dsc.String(), versionID, true), DeleteMarkerMTime: DeleteMarkerMTime{roi.ModTime}, DeleteMarker: roi.DeleteMarker, }, Bucket: roi.Bucket, } if roi.ExistingObjResync.mustResync() { doi.OpType = replication.ExistingObjectReplicationType queueReplicateDeletesWrapper(doi, roi.ExistingObjResync) return } globalReplicationPool.queueReplicaDeleteTask(doi) } } type dynamicSleeper struct { mu sync.RWMutex // Sleep factor factor float64 // maximum sleep cap, // set to <= 0 to disable. maxSleep time.Duration // Don't sleep at all, if time taken is below this value. // This is to avoid too small costly sleeps. minSleep time.Duration // cycle will be closed cycle chan struct{} } // newDynamicSleeper func newDynamicSleeper(factor float64, maxWait time.Duration) *dynamicSleeper { return &dynamicSleeper{ factor: factor, cycle: make(chan struct{}), maxSleep: maxWait, minSleep: 100 * time.Microsecond, } } // Timer returns a timer that has started. // When the returned function is called it will wait. func (d *dynamicSleeper) Timer(ctx context.Context) func() { t := time.Now() return func() { doneAt := time.Now() for { // Grab current values d.mu.RLock() minWait, maxWait := d.minSleep, d.maxSleep factor := d.factor cycle := d.cycle d.mu.RUnlock() elapsed := doneAt.Sub(t) // Don't sleep for really small amount of time wantSleep := time.Duration(float64(elapsed) * factor) if wantSleep <= minWait { return } if maxWait > 0 && wantSleep > maxWait { wantSleep = maxWait } timer := time.NewTimer(wantSleep) select { case <-ctx.Done(): if !timer.Stop() { <-timer.C } return case <-timer.C: return case <-cycle: if !timer.Stop() { // We expired. <-timer.C return } } } } } // Sleep sleeps the specified time multiplied by the sleep factor. // If the factor is updated the sleep will be done again with the new factor. func (d *dynamicSleeper) Sleep(ctx context.Context, base time.Duration) { for { // Grab current values d.mu.RLock() minWait, maxWait := d.minSleep, d.maxSleep factor := d.factor cycle := d.cycle d.mu.RUnlock() // Don't sleep for really small amount of time wantSleep := time.Duration(float64(base) * factor) if wantSleep <= minWait { return } if maxWait > 0 && wantSleep > maxWait { wantSleep = maxWait } timer := time.NewTimer(wantSleep) select { case <-ctx.Done(): if !timer.Stop() { <-timer.C } return case <-timer.C: return case <-cycle: if !timer.Stop() { // We expired. <-timer.C return } } } } // Update the current settings and cycle all waiting. // Parameters are the same as in the contructor. func (d *dynamicSleeper) Update(factor float64, maxWait time.Duration) error { d.mu.Lock() defer d.mu.Unlock() if math.Abs(d.factor-factor) < 1e-10 && d.maxSleep == maxWait { return nil } // Update values and cycle waiting. close(d.cycle) d.factor = factor d.maxSleep = maxWait d.cycle = make(chan struct{}) return nil } const ( // ILMExpiry - audit trail for ILM expiry ILMExpiry = "ilm:expiry" // ILMFreeVersionDelete - audit trail for ILM free-version delete ILMFreeVersionDelete = "ilm:free-version-delete" // ILMTransition - audit trail for ILM transitioning. ILMTransition = " ilm:transition" ) func auditLogLifecycle(ctx context.Context, oi ObjectInfo, trigger string) { var apiName string switch trigger { case ILMExpiry: apiName = "ILMExpiry" case ILMFreeVersionDelete: apiName = "ILMFreeVersionDelete" case ILMTransition: apiName = "ILMTransition" } auditLogInternal(ctx, oi.Bucket, oi.Name, AuditLogOptions{ Trigger: trigger, APIName: apiName, VersionID: oi.VersionID, }) }