/* * Minio Cloud Storage, (C) 2019 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package sql import ( "errors" "strings" ) var ( errInvalidASTNode = errors.New("invalid AST Node") errExpectedBool = errors.New("expected bool") errLikeNonStrArg = errors.New("LIKE clause requires string arguments") errLikeInvalidEscape = errors.New("LIKE clause has invalid ESCAPE character") errNotImplemented = errors.New("not implemented") ) // AST Node Evaluation functions // // During evaluation, the query is known to be valid, as analysis is // complete. The only errors possible are due to value type // mismatches, etc. // // If an aggregation node is present as a descendant (when // e.prop.isAggregation is true), we call evalNode on all child nodes, // check for errors, but do not perform any combining of the results // of child nodes. The final result row is returned after all rows are // processed, and the `getAggregate` function is called. func (e *AliasedExpression) evalNode(r Record) (*Value, error) { return e.Expression.evalNode(r) } func (e *Expression) evalNode(r Record) (*Value, error) { if len(e.And) == 1 { // In this case, result is not required to be boolean // type. return e.And[0].evalNode(r) } // Compute OR of conditions result := false for _, ex := range e.And { res, err := ex.evalNode(r) if err != nil { return nil, err } b, ok := res.ToBool() if !ok { return nil, errExpectedBool } result = result || b } return FromBool(result), nil } func (e *AndCondition) evalNode(r Record) (*Value, error) { if len(e.Condition) == 1 { // In this case, result does not have to be boolean return e.Condition[0].evalNode(r) } // Compute AND of conditions result := true for _, ex := range e.Condition { res, err := ex.evalNode(r) if err != nil { return nil, err } b, ok := res.ToBool() if !ok { return nil, errExpectedBool } result = result && b } return FromBool(result), nil } func (e *Condition) evalNode(r Record) (*Value, error) { if e.Operand != nil { // In this case, result does not have to be boolean return e.Operand.evalNode(r) } // Compute NOT of condition res, err := e.Not.evalNode(r) if err != nil { return nil, err } b, ok := res.ToBool() if !ok { return nil, errExpectedBool } return FromBool(!b), nil } func (e *ConditionOperand) evalNode(r Record) (*Value, error) { opVal, opErr := e.Operand.evalNode(r) if opErr != nil || e.ConditionRHS == nil { return opVal, opErr } // Need to evaluate the ConditionRHS switch { case e.ConditionRHS.Compare != nil: cmpRight, cmpRErr := e.ConditionRHS.Compare.Operand.evalNode(r) if cmpRErr != nil { return nil, cmpRErr } b, err := opVal.compareOp(e.ConditionRHS.Compare.Operator, cmpRight) return FromBool(b), err case e.ConditionRHS.Between != nil: return e.ConditionRHS.Between.evalBetweenNode(r, opVal) case e.ConditionRHS.Like != nil: return e.ConditionRHS.Like.evalLikeNode(r, opVal) case e.ConditionRHS.In != nil: return e.ConditionRHS.In.evalInNode(r, opVal) default: return nil, errInvalidASTNode } } func (e *Between) evalBetweenNode(r Record, arg *Value) (*Value, error) { stVal, stErr := e.Start.evalNode(r) if stErr != nil { return nil, stErr } endVal, endErr := e.End.evalNode(r) if endErr != nil { return nil, endErr } part1, err1 := stVal.compareOp(opLte, arg) if err1 != nil { return nil, err1 } part2, err2 := arg.compareOp(opLte, endVal) if err2 != nil { return nil, err2 } result := part1 && part2 if e.Not { result = !result } return FromBool(result), nil } func (e *Like) evalLikeNode(r Record, arg *Value) (*Value, error) { inferTypeAsString(arg) s, ok := arg.ToString() if !ok { err := errLikeNonStrArg return nil, errLikeInvalidInputs(err) } pattern, err1 := e.Pattern.evalNode(r) if err1 != nil { return nil, err1 } // Infer pattern as string (in case it is untyped) inferTypeAsString(pattern) patternStr, ok := pattern.ToString() if !ok { err := errLikeNonStrArg return nil, errLikeInvalidInputs(err) } escape := runeZero if e.EscapeChar != nil { escapeVal, err2 := e.EscapeChar.evalNode(r) if err2 != nil { return nil, err2 } inferTypeAsString(escapeVal) escapeStr, ok := escapeVal.ToString() if !ok { err := errLikeNonStrArg return nil, errLikeInvalidInputs(err) } if len([]rune(escapeStr)) > 1 { err := errLikeInvalidEscape return nil, errLikeInvalidInputs(err) } } matchResult, err := evalSQLLike(s, patternStr, escape) if err != nil { return nil, err } if e.Not { matchResult = !matchResult } return FromBool(matchResult), nil } func (e *In) evalInNode(r Record, arg *Value) (*Value, error) { result := false for _, elt := range e.Expressions { eltVal, err := elt.evalNode(r) if err != nil { return nil, err } // FIXME: type inference? // Types must match. if arg.vType != eltVal.vType { // match failed. continue } if arg.value == eltVal.value { result = true break } } return FromBool(result), nil } func (e *Operand) evalNode(r Record) (*Value, error) { lval, lerr := e.Left.evalNode(r) if lerr != nil || len(e.Right) == 0 { return lval, lerr } // Process remaining child nodes - result must be // numeric. This AST node is for terms separated by + or - // symbols. for _, rightTerm := range e.Right { op := rightTerm.Op rval, rerr := rightTerm.Right.evalNode(r) if rerr != nil { return nil, rerr } err := lval.arithOp(op, rval) if err != nil { return nil, err } } return lval, nil } func (e *MultOp) evalNode(r Record) (*Value, error) { lval, lerr := e.Left.evalNode(r) if lerr != nil || len(e.Right) == 0 { return lval, lerr } // Process other child nodes - result must be numeric. This // AST node is for terms separated by *, / or % symbols. for _, rightTerm := range e.Right { op := rightTerm.Op rval, rerr := rightTerm.Right.evalNode(r) if rerr != nil { return nil, rerr } err := lval.arithOp(op, rval) if err != nil { return nil, err } } return lval, nil } func (e *UnaryTerm) evalNode(r Record) (*Value, error) { if e.Negated == nil { return e.Primary.evalNode(r) } v, err := e.Negated.Term.evalNode(r) if err != nil { return nil, err } inferTypeForArithOp(v) if ival, ok := v.ToInt(); ok { return FromInt(-ival), nil } else if fval, ok := v.ToFloat(); ok { return FromFloat(-fval), nil } return nil, errArithMismatchedTypes } func (e *JSONPath) evalNode(r Record) (*Value, error) { // Strip the table name from the keypath. keypath := e.String() ps := strings.SplitN(keypath, ".", 2) if len(ps) == 2 { keypath = ps[1] } return r.Get(keypath) } func (e *PrimaryTerm) evalNode(r Record) (res *Value, err error) { switch { case e.Value != nil: return e.Value.evalNode(r) case e.JPathExpr != nil: return e.JPathExpr.evalNode(r) case e.SubExpression != nil: return e.SubExpression.evalNode(r) case e.FuncCall != nil: return e.FuncCall.evalNode(r) } return nil, errInvalidASTNode } func (e *FuncExpr) evalNode(r Record) (res *Value, err error) { switch e.getFunctionName() { case aggFnCount, aggFnAvg, aggFnMax, aggFnMin, aggFnSum: return e.getAggregate() default: return e.evalSQLFnNode(r) } } // evalNode on a literal value is independent of the node being an // aggregation or a row function - it always returns a value. func (e *LitValue) evalNode(_ Record) (res *Value, err error) { switch { case e.Number != nil: return floatToValue(*e.Number), nil case e.String != nil: return FromString(string(*e.String)), nil case e.Boolean != nil: return FromBool(bool(*e.Boolean)), nil } return FromNull(), nil }