/********************************************************************** Copyright(c) 2011-2014 Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **********************************************************************/ #include #include #include // for memset, memcmp #include "erasure-code.h" #include "erasure/types.h" #ifndef FUNCTION_UNDER_TEST # define FUNCTION_UNDER_TEST gf_3vect_dot_prod_sse #endif #ifndef TEST_MIN_SIZE # define TEST_MIN_SIZE 16 #endif #define str(s) #s #define xstr(s) str(s) #define TEST_LEN 8192 #define TEST_SIZE (TEST_LEN/2) #define TEST_MEM TEST_SIZE #define TEST_LOOPS 10000 #define TEST_TYPE_STR "" #ifndef TEST_SOURCES # define TEST_SOURCES 16 #endif #ifndef RANDOMS # define RANDOMS 20 #endif #ifdef EC_ALIGNED_ADDR // Define power of 2 range to check ptr, len alignment # define PTR_ALIGN_CHK_B 0 # define LEN_ALIGN_CHK_B 0 // 0 for aligned only #else // Define power of 2 range to check ptr, len alignment # define PTR_ALIGN_CHK_B 32 # define LEN_ALIGN_CHK_B 32 // 0 for aligned only #endif typedef unsigned char u8; void dump(unsigned char *buf, int len) { int i; for (i = 0; i < len;) { printf(" %2x", 0xff & buf[i++]); if (i % 32 == 0) printf("\n"); } printf("\n"); } void dump_matrix(unsigned char **s, int k, int m) { int i, j; for (i = 0; i < k; i++) { for (j = 0; j < m; j++) { printf(" %2x", s[i][j]); } printf("\n"); } printf("\n"); } void dump_u8xu8(unsigned char *s, int k, int m) { int i, j; for (i = 0; i < k; i++) { for (j = 0; j < m; j++) { printf(" %2x", 0xff & s[j + (i * m)]); } printf("\n"); } printf("\n"); } int main(int argc, char *argv[]) { int i, j, rtest, srcs; void *buf; u8 g1[TEST_SOURCES], g2[TEST_SOURCES], g3[TEST_SOURCES]; u8 g_tbls[3 * TEST_SOURCES * 32], *dest_ptrs[3], *buffs[TEST_SOURCES]; u8 *dest1, *dest2, *dest3, *dest_ref1, *dest_ref2, *dest_ref3; int align, size; unsigned char *efence_buffs[TEST_SOURCES]; unsigned int offset; u8 *ubuffs[TEST_SOURCES]; u8 *udest_ptrs[3]; printf(xstr(FUNCTION_UNDER_TEST) "_test: %dx%d ", TEST_SOURCES, TEST_LEN); // Allocate the arrays for (i = 0; i < TEST_SOURCES; i++) { if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } buffs[i] = buf; } if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } dest1 = buf; if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } dest2 = buf; if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } dest3 = buf; if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } dest_ref1 = buf; if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail");; return -1; } dest_ref2 = buf; if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } dest_ref3 = buf; dest_ptrs[0] = dest1; dest_ptrs[1] = dest2; dest_ptrs[2] = dest3; // Test of all zeros for (i = 0; i < TEST_SOURCES; i++) memset(buffs[i], 0, TEST_LEN); memset(dest1, 0, TEST_LEN); memset(dest2, 0, TEST_LEN); memset(dest3, 0, TEST_LEN); memset(dest_ref1, 0, TEST_LEN); memset(dest_ref2, 0, TEST_LEN); memset(dest_ref3, 0, TEST_LEN); memset(g1, 2, TEST_SOURCES); memset(g2, 1, TEST_SOURCES); memset(g3, 7, TEST_SOURCES); for (i = 0; i < TEST_SOURCES; i++) { gf_vect_mul_init(g1[i], &g_tbls[i * 32]); gf_vect_mul_init(g2[i], &g_tbls[32 * TEST_SOURCES + i * 32]); gf_vect_mul_init(g3[i], &g_tbls[64 * TEST_SOURCES + i * 32]); } gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref1); gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES], buffs, dest_ref2); gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES], buffs, dest_ref3); FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest_ptrs); if (0 != memcmp(dest_ref1, dest1, TEST_LEN)) { printf("Fail zero" xstr(FUNCTION_UNDER_TEST) " test1\n"); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref1, 25); printf("dprod_dut:"); dump(dest1, 25); return -1; } if (0 != memcmp(dest_ref2, dest2, TEST_LEN)) { printf("Fail zero " xstr(FUNCTION_UNDER_TEST) " test2\n"); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref2, 25); printf("dprod_dut:"); dump(dest2, 25); return -1; } if (0 != memcmp(dest_ref3, dest3, TEST_LEN)) { printf("Fail zero " xstr(FUNCTION_UNDER_TEST) " test3\n"); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref3, 25); printf("dprod_dut:"); dump(dest3, 25); return -1; } putchar('.'); // Rand data test for (rtest = 0; rtest < RANDOMS; rtest++) { for (i = 0; i < TEST_SOURCES; i++) for (j = 0; j < TEST_LEN; j++) buffs[i][j] = rand(); for (i = 0; i < TEST_SOURCES; i++) { g1[i] = rand(); g2[i] = rand(); g3[i] = rand(); } for (i = 0; i < TEST_SOURCES; i++) { gf_vect_mul_init(g1[i], &g_tbls[i * 32]); gf_vect_mul_init(g2[i], &g_tbls[(32 * TEST_SOURCES) + (i * 32)]); gf_vect_mul_init(g3[i], &g_tbls[(64 * TEST_SOURCES) + (i * 32)]); } gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[0], buffs, dest_ref1); gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES], buffs, dest_ref2); gf_vect_dot_prod_base(TEST_LEN, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES], buffs, dest_ref3); FUNCTION_UNDER_TEST(TEST_LEN, TEST_SOURCES, g_tbls, buffs, dest_ptrs); if (0 != memcmp(dest_ref1, dest1, TEST_LEN)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test1 %d\n", rtest); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref1, 25); printf("dprod_dut:"); dump(dest1, 25); return -1; } if (0 != memcmp(dest_ref2, dest2, TEST_LEN)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test2 %d\n", rtest); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref2, 25); printf("dprod_dut:"); dump(dest2, 25); return -1; } if (0 != memcmp(dest_ref3, dest3, TEST_LEN)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test3 %d\n", rtest); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref3, 25); printf("dprod_dut:"); dump(dest3, 25); return -1; } putchar('.'); } // Rand data test with varied parameters for (rtest = 0; rtest < RANDOMS; rtest++) { for (srcs = TEST_SOURCES; srcs > 0; srcs--) { for (i = 0; i < srcs; i++) for (j = 0; j < TEST_LEN; j++) buffs[i][j] = rand(); for (i = 0; i < srcs; i++) { g1[i] = rand(); g2[i] = rand(); g3[i] = rand(); } for (i = 0; i < srcs; i++) { gf_vect_mul_init(g1[i], &g_tbls[i * 32]); gf_vect_mul_init(g2[i], &g_tbls[(32 * srcs) + (i * 32)]); gf_vect_mul_init(g3[i], &g_tbls[(64 * srcs) + (i * 32)]); } gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[0], buffs, dest_ref1); gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[32 * srcs], buffs, dest_ref2); gf_vect_dot_prod_base(TEST_LEN, srcs, &g_tbls[64 * srcs], buffs, dest_ref3); FUNCTION_UNDER_TEST(TEST_LEN, srcs, g_tbls, buffs, dest_ptrs); if (0 != memcmp(dest_ref1, dest1, TEST_LEN)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test1 srcs=%d\n", srcs); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref1, 25); printf("dprod_dut:"); dump(dest1, 25); return -1; } if (0 != memcmp(dest_ref2, dest2, TEST_LEN)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test2 srcs=%d\n", srcs); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref2, 25); printf("dprod_dut:"); dump(dest2, 25); return -1; } if (0 != memcmp(dest_ref3, dest3, TEST_LEN)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test3 srcs=%d\n", srcs); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref3, 25); printf("dprod_dut:"); dump(dest3, 25); return -1; } putchar('.'); } } // Run tests at end of buffer for Electric Fence align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16; for (size = TEST_MIN_SIZE; size <= TEST_SIZE; size += align) { for (i = 0; i < TEST_SOURCES; i++) for (j = 0; j < TEST_LEN; j++) buffs[i][j] = rand(); for (i = 0; i < TEST_SOURCES; i++) // Line up TEST_SIZE from end efence_buffs[i] = buffs[i] + TEST_LEN - size; for (i = 0; i < TEST_SOURCES; i++) { g1[i] = rand(); g2[i] = rand(); g3[i] = rand(); } for (i = 0; i < TEST_SOURCES; i++) { gf_vect_mul_init(g1[i], &g_tbls[i * 32]); gf_vect_mul_init(g2[i], &g_tbls[(32 * TEST_SOURCES) + (i * 32)]); gf_vect_mul_init(g3[i], &g_tbls[(64 * TEST_SOURCES) + (i * 32)]); } gf_vect_dot_prod_base(size, TEST_SOURCES, &g_tbls[0], efence_buffs, dest_ref1); gf_vect_dot_prod_base(size, TEST_SOURCES, &g_tbls[32 * TEST_SOURCES], efence_buffs, dest_ref2); gf_vect_dot_prod_base(size, TEST_SOURCES, &g_tbls[64 * TEST_SOURCES], efence_buffs, dest_ref3); FUNCTION_UNDER_TEST(size, TEST_SOURCES, g_tbls, efence_buffs, dest_ptrs); if (0 != memcmp(dest_ref1, dest1, size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test1 %d\n", rtest); dump_matrix(efence_buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref1, align); printf("dprod_dut:"); dump(dest1, align); return -1; } if (0 != memcmp(dest_ref2, dest2, size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test2 %d\n", rtest); dump_matrix(efence_buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref2, align); printf("dprod_dut:"); dump(dest2, align); return -1; } if (0 != memcmp(dest_ref3, dest3, size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test3 %d\n", rtest); dump_matrix(efence_buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref3, align); printf("dprod_dut:"); dump(dest3, align); return -1; } putchar('.'); } // Test rand ptr alignment if available for (rtest = 0; rtest < RANDOMS; rtest++) { size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~(TEST_MIN_SIZE - 1); srcs = rand() % TEST_SOURCES; if (srcs == 0) continue; offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B; // Add random offsets for (i = 0; i < srcs; i++) ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset)); udest_ptrs[0] = dest1 + (rand() & (PTR_ALIGN_CHK_B - offset)); udest_ptrs[1] = dest2 + (rand() & (PTR_ALIGN_CHK_B - offset)); udest_ptrs[2] = dest3 + (rand() & (PTR_ALIGN_CHK_B - offset)); memset(dest1, 0, TEST_LEN); // zero pad to check write-over memset(dest2, 0, TEST_LEN); memset(dest3, 0, TEST_LEN); for (i = 0; i < srcs; i++) for (j = 0; j < size; j++) ubuffs[i][j] = rand(); for (i = 0; i < srcs; i++) { g1[i] = rand(); g2[i] = rand(); g3[i] = rand(); } for (i = 0; i < srcs; i++) { gf_vect_mul_init(g1[i], &g_tbls[i * 32]); gf_vect_mul_init(g2[i], &g_tbls[(32 * srcs) + (i * 32)]); gf_vect_mul_init(g3[i], &g_tbls[(64 * srcs) + (i * 32)]); } gf_vect_dot_prod_base(size, srcs, &g_tbls[0], ubuffs, dest_ref1); gf_vect_dot_prod_base(size, srcs, &g_tbls[32 * srcs], ubuffs, dest_ref2); gf_vect_dot_prod_base(size, srcs, &g_tbls[64 * srcs], ubuffs, dest_ref3); FUNCTION_UNDER_TEST(size, srcs, g_tbls, ubuffs, udest_ptrs); if (memcmp(dest_ref1, udest_ptrs[0], size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign srcs=%d\n", srcs); dump_matrix(ubuffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref1, 25); printf("dprod_dut:"); dump(udest_ptrs[0], 25); return -1; } if (memcmp(dest_ref2, udest_ptrs[1], size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign srcs=%d\n", srcs); dump_matrix(ubuffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref2, 25); printf("dprod_dut:"); dump(udest_ptrs[1], 25); return -1; } if (memcmp(dest_ref3, udest_ptrs[2], size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign srcs=%d\n", srcs); dump_matrix(ubuffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref3, 25); printf("dprod_dut:"); dump(udest_ptrs[2], 25); return -1; } // Confirm that padding around dests is unchanged memset(dest_ref1, 0, PTR_ALIGN_CHK_B); // Make reference zero buff offset = udest_ptrs[0] - dest1; if (memcmp(dest1, dest_ref1, offset)) { printf("Fail rand ualign pad1 start\n"); return -1; } if (memcmp(dest1 + offset + size, dest_ref1, PTR_ALIGN_CHK_B - offset)) { printf("Fail rand ualign pad1 end\n"); return -1; } offset = udest_ptrs[1] - dest2; if (memcmp(dest2, dest_ref1, offset)) { printf("Fail rand ualign pad2 start\n"); return -1; } if (memcmp(dest2 + offset + size, dest_ref1, PTR_ALIGN_CHK_B - offset)) { printf("Fail rand ualign pad2 end\n"); return -1; } offset = udest_ptrs[2] - dest3; if (memcmp(dest3, dest_ref1, offset)) { printf("Fail rand ualign pad3 start\n"); return -1; } if (memcmp(dest3 + offset + size, dest_ref1, PTR_ALIGN_CHK_B - offset)) { printf("Fail rand ualign pad3 end\n");; return -1; } putchar('.'); } // Test all size alignment align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16; for (size = TEST_LEN; size >= TEST_MIN_SIZE; size -= align) { srcs = TEST_SOURCES; for (i = 0; i < srcs; i++) for (j = 0; j < size; j++) buffs[i][j] = rand(); for (i = 0; i < srcs; i++) { g1[i] = rand(); g2[i] = rand(); g3[i] = rand(); } for (i = 0; i < srcs; i++) { gf_vect_mul_init(g1[i], &g_tbls[i * 32]); gf_vect_mul_init(g2[i], &g_tbls[(32 * srcs) + (i * 32)]); gf_vect_mul_init(g3[i], &g_tbls[(64 * srcs) + (i * 32)]); } gf_vect_dot_prod_base(size, srcs, &g_tbls[0], buffs, dest_ref1); gf_vect_dot_prod_base(size, srcs, &g_tbls[32 * srcs], buffs, dest_ref2); gf_vect_dot_prod_base(size, srcs, &g_tbls[64 * srcs], buffs, dest_ref3); FUNCTION_UNDER_TEST(size, srcs, g_tbls, buffs, dest_ptrs); if (memcmp(dest_ref1, dest_ptrs[0], size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign len=%d\n", size); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref1, 25); printf("dprod_dut:"); dump(dest_ptrs[0], 25); return -1; } if (memcmp(dest_ref2, dest_ptrs[1], size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign len=%d\n", size); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref2, 25); printf("dprod_dut:"); dump(dest_ptrs[1], 25); return -1; } if (memcmp(dest_ref3, dest_ptrs[2], size)) { printf("Fail rand " xstr(FUNCTION_UNDER_TEST) " test ualign len=%d\n", size); dump_matrix(buffs, 5, TEST_SOURCES); printf("dprod_base:"); dump(dest_ref3, 25); printf("dprod_dut:"); dump(dest_ptrs[2], 25); return -1; } } printf("Pass\n"); return 0; }