// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. package crypto import ( "bytes" "context" "crypto/hmac" "crypto/rand" "encoding/binary" "errors" "io" "path" "github.com/minio/minio/internal/fips" "github.com/minio/minio/internal/hash/sha256" "github.com/minio/minio/internal/logger" "github.com/minio/sio" ) // ObjectKey is a 256 bit secret key used to encrypt the object. // It must never be stored in plaintext. type ObjectKey [32]byte // GenerateKey generates a unique ObjectKey from a 256 bit external key // and a source of randomness. If random is nil the default PRNG of the // system (crypto/rand) is used. func GenerateKey(extKey []byte, random io.Reader) (key ObjectKey) { if random == nil { random = rand.Reader } if len(extKey) != 32 { // safety check logger.CriticalIf(context.Background(), errors.New("crypto: invalid key length")) } var nonce [32]byte if _, err := io.ReadFull(random, nonce[:]); err != nil { logger.CriticalIf(context.Background(), errOutOfEntropy) } const Context = "object-encryption-key generation" mac := hmac.New(sha256.New, extKey) mac.Write([]byte(Context)) mac.Write(nonce[:]) mac.Sum(key[:0]) return key } // GenerateIV generates a new random 256 bit IV from the provided source // of randomness. If random is nil the default PRNG of the system // (crypto/rand) is used. func GenerateIV(random io.Reader) (iv [32]byte) { if random == nil { random = rand.Reader } if _, err := io.ReadFull(random, iv[:]); err != nil { logger.CriticalIf(context.Background(), errOutOfEntropy) } return iv } // SealedKey represents a sealed object key. It can be stored // at an untrusted location. type SealedKey struct { Key [64]byte // The encrypted and authenticated object-key. IV [32]byte // The random IV used to encrypt the object-key. Algorithm string // The sealing algorithm used to encrypt the object key. } // Seal encrypts the ObjectKey using the 256 bit external key and IV. The sealed // key is also cryptographically bound to the object's path (bucket/object) and the // domain (SSE-C or SSE-S3). func (key ObjectKey) Seal(extKey []byte, iv [32]byte, domain, bucket, object string) SealedKey { if len(extKey) != 32 { logger.CriticalIf(context.Background(), errors.New("crypto: invalid key length")) } var ( sealingKey [32]byte encryptedKey bytes.Buffer ) mac := hmac.New(sha256.New, extKey) mac.Write(iv[:]) mac.Write([]byte(domain)) mac.Write([]byte(SealAlgorithm)) mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object' mac.Sum(sealingKey[:0]) if n, err := sio.Encrypt(&encryptedKey, bytes.NewReader(key[:]), sio.Config{Key: sealingKey[:], CipherSuites: fips.DARECiphers()}); n != 64 || err != nil { logger.CriticalIf(context.Background(), errors.New("Unable to generate sealed key")) } sealedKey := SealedKey{ IV: iv, Algorithm: SealAlgorithm, } copy(sealedKey.Key[:], encryptedKey.Bytes()) return sealedKey } // Unseal decrypts a sealed key using the 256 bit external key. Since the sealed key // may be cryptographically bound to the object's path the same bucket/object as during sealing // must be provided. On success the ObjectKey contains the decrypted sealed key. func (key *ObjectKey) Unseal(extKey []byte, sealedKey SealedKey, domain, bucket, object string) error { var unsealConfig sio.Config switch sealedKey.Algorithm { default: return Errorf("The sealing algorithm '%s' is not supported", sealedKey.Algorithm) case SealAlgorithm: mac := hmac.New(sha256.New, extKey) mac.Write(sealedKey.IV[:]) mac.Write([]byte(domain)) mac.Write([]byte(SealAlgorithm)) mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object' unsealConfig = sio.Config{MinVersion: sio.Version20, Key: mac.Sum(nil), CipherSuites: fips.DARECiphers()} case InsecureSealAlgorithm: sha := sha256.New() sha.Write(extKey) sha.Write(sealedKey.IV[:]) unsealConfig = sio.Config{MinVersion: sio.Version10, Key: sha.Sum(nil), CipherSuites: fips.DARECiphers()} } if out, err := sio.DecryptBuffer(key[:0], sealedKey.Key[:], unsealConfig); len(out) != 32 || err != nil { return ErrSecretKeyMismatch } return nil } // DerivePartKey derives an unique 256 bit key from an ObjectKey and the part index. func (key ObjectKey) DerivePartKey(id uint32) (partKey [32]byte) { var bin [4]byte binary.LittleEndian.PutUint32(bin[:], id) mac := hmac.New(sha256.New, key[:]) mac.Write(bin[:]) mac.Sum(partKey[:0]) return partKey } // SealETag seals the etag using the object key. // It does not encrypt empty ETags because such ETags indicate // that the S3 client hasn't sent an ETag = MD5(object) and // the backend can pick an ETag value. func (key ObjectKey) SealETag(etag []byte) []byte { if len(etag) == 0 { // don't encrypt empty ETag - only if client sent ETag = MD5(object) return etag } var buffer bytes.Buffer mac := hmac.New(sha256.New, key[:]) mac.Write([]byte("SSE-etag")) if _, err := sio.Encrypt(&buffer, bytes.NewReader(etag), sio.Config{Key: mac.Sum(nil), CipherSuites: fips.DARECiphers()}); err != nil { logger.CriticalIf(context.Background(), errors.New("Unable to encrypt ETag using object key")) } return buffer.Bytes() } // UnsealETag unseals the etag using the provided object key. // It does not try to decrypt the ETag if len(etag) == 16 // because such ETags indicate that the S3 client hasn't sent // an ETag = MD5(object) and the backend has picked an ETag value. func (key ObjectKey) UnsealETag(etag []byte) ([]byte, error) { if !IsETagSealed(etag) { return etag, nil } mac := hmac.New(sha256.New, key[:]) mac.Write([]byte("SSE-etag")) return sio.DecryptBuffer(make([]byte, 0, len(etag)), etag, sio.Config{Key: mac.Sum(nil), CipherSuites: fips.DARECiphers()}) }