// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package cmd import ( "bytes" "context" "errors" "fmt" "io" "sync" "time" "github.com/minio/madmin-go/v2" "github.com/minio/minio/internal/logger" "github.com/minio/minio/internal/sync/errgroup" ) const reservedMetadataPrefixLowerDataShardFix = ReservedMetadataPrefixLower + "data-shard-fix" //go:generate stringer -type=healingMetric -trimprefix=healingMetric $GOFILE type healingMetric uint8 const ( healingMetricBucket healingMetric = iota healingMetricObject healingMetricCheckAbandonedParts ) // AcceptableDelta returns 'true' if the fi.DiskMTime is under // acceptable delta of "delta" duration with maxTime. // // This code is primarily used for heuristic detection of // incorrect shards, as per https://github.com/minio/minio/pull/13803 // // This check only is active if we could find maximally // occurring disk mtimes that are somewhat same across // the quorum. Allowing to skip those shards which we // might think are wrong. func (fi FileInfo) AcceptableDelta(maxTime time.Time, delta time.Duration) bool { diff := maxTime.Sub(fi.DiskMTime) if diff < 0 { diff = -diff } return diff < delta } // DataShardFixed - data shard fixed? func (fi FileInfo) DataShardFixed() bool { return fi.Metadata[reservedMetadataPrefixLowerDataShardFix] == "true" } // Heals a bucket if it doesn't exist on one of the disks, additionally // also heals the missing entries for bucket metadata files // `policy.json, notification.xml, listeners.json`. func (er erasureObjects) HealBucket(ctx context.Context, bucket string, opts madmin.HealOpts) ( result madmin.HealResultItem, err error, ) { if !opts.DryRun { defer NSUpdated(bucket, slashSeparator) } storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // Heal bucket. return er.healBucket(ctx, storageDisks, storageEndpoints, bucket, opts) } // Heal bucket - create buckets on disks where it does not exist. func (er erasureObjects) healBucket(ctx context.Context, storageDisks []StorageAPI, storageEndpoints []Endpoint, bucket string, opts madmin.HealOpts) (res madmin.HealResultItem, err error) { // get write quorum for an object writeQuorum := len(storageDisks) - er.defaultParityCount if writeQuorum == er.defaultParityCount { writeQuorum++ } if globalTrace.NumSubscribers(madmin.TraceHealing) > 0 { startTime := time.Now() defer func() { healTrace(healingMetricBucket, startTime, bucket, "", &opts, err, &res) }() } // Initialize sync waitgroup. g := errgroup.WithNErrs(len(storageDisks)) // Disk states slices beforeState := make([]string, len(storageDisks)) afterState := make([]string, len(storageDisks)) // Make a volume entry on all underlying storage disks. for index := range storageDisks { index := index g.Go(func() error { if storageDisks[index] == nil { beforeState[index] = madmin.DriveStateOffline afterState[index] = madmin.DriveStateOffline return errDiskNotFound } beforeState[index] = madmin.DriveStateOk afterState[index] = madmin.DriveStateOk if bucket == minioReservedBucket { return nil } if _, serr := storageDisks[index].StatVol(ctx, bucket); serr != nil { if serr == errDiskNotFound { beforeState[index] = madmin.DriveStateOffline afterState[index] = madmin.DriveStateOffline return serr } if serr != errVolumeNotFound { beforeState[index] = madmin.DriveStateCorrupt afterState[index] = madmin.DriveStateCorrupt return serr } beforeState[index] = madmin.DriveStateMissing afterState[index] = madmin.DriveStateMissing // mutate only if not a dry-run if opts.DryRun { return nil } return serr } return nil }, index) } errs := g.Wait() // Initialize heal result info res = madmin.HealResultItem{ Type: madmin.HealItemBucket, Bucket: bucket, DiskCount: len(storageDisks), ParityBlocks: er.defaultParityCount, DataBlocks: len(storageDisks) - er.defaultParityCount, } for i := range beforeState { res.Before.Drives = append(res.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i].String(), State: beforeState[i], }) } reducedErr := reduceReadQuorumErrs(ctx, errs, bucketOpIgnoredErrs, res.DataBlocks) if errors.Is(reducedErr, errVolumeNotFound) && !opts.Recreate { for i := range beforeState { res.After.Drives = append(res.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i].String(), State: madmin.DriveStateOk, }) } return res, nil } // Initialize sync waitgroup. g = errgroup.WithNErrs(len(storageDisks)) // Make a volume entry on all underlying storage disks. for index := range storageDisks { index := index g.Go(func() error { if beforeState[index] == madmin.DriveStateMissing { makeErr := storageDisks[index].MakeVol(ctx, bucket) if makeErr == nil { afterState[index] = madmin.DriveStateOk } return makeErr } return errs[index] }, index) } errs = g.Wait() reducedErr = reduceWriteQuorumErrs(ctx, errs, bucketOpIgnoredErrs, writeQuorum) if reducedErr != nil { // If we have exactly half the drives not available, // we should still allow HealBucket to not return error. // this is necessary for starting the server. readQuorum := res.DataBlocks switch reduceReadQuorumErrs(ctx, errs, nil, readQuorum) { case nil: case errDiskNotFound: default: return res, reducedErr } } for i := range afterState { res.After.Drives = append(res.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i].String(), State: afterState[i], }) } return res, nil } // listAllBuckets lists all buckets from all disks. It also // returns the occurrence of each buckets in all disks func listAllBuckets(ctx context.Context, storageDisks []StorageAPI, healBuckets map[string]VolInfo, readQuorum int) error { g := errgroup.WithNErrs(len(storageDisks)) var mu sync.Mutex for index := range storageDisks { index := index g.Go(func() error { if storageDisks[index] == nil { // we ignore disk not found errors return nil } if storageDisks[index].Healing() != nil { // we ignore disks under healing return nil } volsInfo, err := storageDisks[index].ListVols(ctx) if err != nil { return err } for _, volInfo := range volsInfo { // StorageAPI can send volume names which are // incompatible with buckets - these are // skipped, like the meta-bucket. if isReservedOrInvalidBucket(volInfo.Name, false) { continue } mu.Lock() if _, ok := healBuckets[volInfo.Name]; !ok { healBuckets[volInfo.Name] = volInfo } mu.Unlock() } return nil }, index) } return reduceReadQuorumErrs(ctx, g.Wait(), bucketMetadataOpIgnoredErrs, readQuorum) } // Only heal on disks where we are sure that healing is needed. We can expand // this list as and when we figure out more errors can be added to this list safely. func shouldHealObjectOnDisk(erErr, dataErr error, meta FileInfo, latestMeta FileInfo, doinline bool) bool { switch { case errors.Is(erErr, errFileNotFound) || errors.Is(erErr, errFileVersionNotFound): return true case errors.Is(erErr, errFileCorrupt): return true } if erErr == nil { if meta.XLV1 { // Legacy means heal always // always check first. return true } if doinline { // convert small files to 'inline' return true } if !meta.Deleted && !meta.IsRemote() { // If xl.meta was read fine but there may be problem with the part.N files. if IsErr(dataErr, []error{ errFileNotFound, errFileVersionNotFound, errFileCorrupt, }...) { return true } } if !latestMeta.Equals(meta) { return true } } return false } // Heals an object by re-writing corrupt/missing erasure blocks. func (er *erasureObjects) healObject(ctx context.Context, bucket string, object string, versionID string, opts madmin.HealOpts) (result madmin.HealResultItem, err error) { dryRun := opts.DryRun scanMode := opts.ScanMode storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() if globalTrace.NumSubscribers(madmin.TraceHealing) > 0 { startTime := time.Now() defer func() { healTrace(healingMetricObject, startTime, bucket, object, &opts, err, &result) }() } // Initialize heal result object result = madmin.HealResultItem{ Type: madmin.HealItemObject, Bucket: bucket, Object: object, VersionID: versionID, DiskCount: len(storageDisks), } if !opts.NoLock { lk := er.NewNSLock(bucket, object) lkctx, err := lk.GetLock(ctx, globalOperationTimeout) if err != nil { return result, err } ctx = lkctx.Context() defer lk.Unlock(lkctx) } // Re-read when we have lock... partsMetadata, errs := readAllFileInfo(ctx, storageDisks, bucket, object, versionID, true) if isAllNotFound(errs) { err := errFileNotFound if versionID != "" { err = errFileVersionNotFound } // Nothing to do, file is already gone. return er.defaultHealResult(FileInfo{}, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } readQuorum, _, err := objectQuorumFromMeta(ctx, partsMetadata, errs, er.defaultParityCount) if err != nil { m, err := er.deleteIfDangling(ctx, bucket, object, partsMetadata, errs, nil, ObjectOptions{ VersionID: versionID, }) errs = make([]error, len(errs)) for i := range errs { errs[i] = err } if err == nil { // Dangling object successfully purged, size is '0' m.Size = 0 } // Generate file/version not found with default heal result err = errFileNotFound if versionID != "" { err = errFileVersionNotFound } return er.defaultHealResult(m, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } result.ParityBlocks = result.DiskCount - readQuorum result.DataBlocks = readQuorum // List of disks having latest version of the object xl.meta // (by modtime). onlineDisks, modTime := listOnlineDisks(storageDisks, partsMetadata, errs) // Latest FileInfo for reference. If a valid metadata is not // present, it is as good as object not found. latestMeta, err := pickValidFileInfo(ctx, partsMetadata, modTime, readQuorum) if err != nil { return result, err } // List of disks having all parts as per latest metadata. // NOTE: do not pass in latestDisks to diskWithAllParts since // the diskWithAllParts needs to reach the drive to ensure // validity of the metadata content, we should make sure that // we pass in disks as is for it to be verified. Once verified // the disksWithAllParts() returns the actual disks that can be // used here for reconstruction. This is done to ensure that // we do not skip drives that have inconsistent metadata to be // skipped from purging when they are stale. availableDisks, dataErrs, diskMTime := disksWithAllParts(ctx, onlineDisks, partsMetadata, errs, latestMeta, bucket, object, scanMode) var erasure Erasure var recreate bool if !latestMeta.Deleted && !latestMeta.IsRemote() { // Initialize erasure coding erasure, err = NewErasure(ctx, latestMeta.Erasure.DataBlocks, latestMeta.Erasure.ParityBlocks, latestMeta.Erasure.BlockSize) if err != nil { return result, err } // Is only 'true' if the opts.Recreate is true and // the object shardSize < smallFileThreshold do not // set this to 'true' arbitrarily and must be only // 'true' with caller ask. recreate = (opts.Recreate && !latestMeta.InlineData() && len(latestMeta.Parts) == 1 && erasure.ShardFileSize(latestMeta.Parts[0].ActualSize) < smallFileThreshold) } // Loop to find number of disks with valid data, per-drive // data state and a list of outdated disks on which data needs // to be healed. outDatedDisks := make([]StorageAPI, len(storageDisks)) disksToHealCount := 0 for i, v := range availableDisks { driveState := "" switch { case v != nil: driveState = madmin.DriveStateOk // If data is sane on any one disk, we can // extract the correct object size. result.ObjectSize = partsMetadata[i].Size case errs[i] == errDiskNotFound, dataErrs[i] == errDiskNotFound: driveState = madmin.DriveStateOffline case errs[i] == errFileNotFound, errs[i] == errFileVersionNotFound, errs[i] == errVolumeNotFound: fallthrough case dataErrs[i] == errFileNotFound, dataErrs[i] == errFileVersionNotFound, dataErrs[i] == errVolumeNotFound: driveState = madmin.DriveStateMissing default: // all remaining cases imply corrupt data/metadata driveState = madmin.DriveStateCorrupt } if shouldHealObjectOnDisk(errs[i], dataErrs[i], partsMetadata[i], latestMeta, recreate) { outDatedDisks[i] = storageDisks[i] disksToHealCount++ result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i].String(), State: driveState, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i].String(), State: driveState, }) continue } result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i].String(), State: driveState, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i].String(), State: driveState, }) } if isAllNotFound(errs) { // File is fully gone, fileInfo is empty. err := errFileNotFound if versionID != "" { err = errFileVersionNotFound } return er.defaultHealResult(FileInfo{}, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } if disksToHealCount == 0 { // Nothing to heal! return result, nil } // After this point, only have to repair data on disk - so // return if it is a dry-run if dryRun { return result, nil } if !latestMeta.XLV1 && !latestMeta.Deleted && !recreate && disksToHealCount > latestMeta.Erasure.ParityBlocks { // When disk to heal count is greater than parity blocks we should simply error out. err := fmt.Errorf("more drives are expected to heal than parity, returned errors: %v (dataErrs %v) -> %s/%s(%s)", errs, dataErrs, bucket, object, versionID) logger.LogIf(ctx, err) return er.defaultHealResult(latestMeta, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } cleanFileInfo := func(fi FileInfo) FileInfo { // Returns a copy of the 'fi' with erasure index, checksums and inline data niled. nfi := fi if !nfi.IsRemote() { nfi.Data = nil nfi.Erasure.Index = 0 nfi.Erasure.Checksums = nil } return nfi } // We write at temporary location and then rename to final location. tmpID := mustGetUUID() migrateDataDir := mustGetUUID() // Reorder so that we have data disks first and parity disks next. latestDisks := shuffleDisks(availableDisks, latestMeta.Erasure.Distribution) outDatedDisks = shuffleDisks(outDatedDisks, latestMeta.Erasure.Distribution) partsMetadata = shufflePartsMetadata(partsMetadata, latestMeta.Erasure.Distribution) copyPartsMetadata := make([]FileInfo, len(partsMetadata)) for i := range latestDisks { if latestDisks[i] == nil { continue } copyPartsMetadata[i] = partsMetadata[i] } for i := range outDatedDisks { if outDatedDisks[i] == nil { continue } // Make sure to write the FileInfo information // that is expected to be in quorum. partsMetadata[i] = cleanFileInfo(latestMeta) } // source data dir shall be empty in case of XLV1 // differentiate it with dstDataDir for readability // srcDataDir is the one used with newBitrotReader() // to read existing content. srcDataDir := latestMeta.DataDir dstDataDir := latestMeta.DataDir if latestMeta.XLV1 { dstDataDir = migrateDataDir } var inlineBuffers []*bytes.Buffer if !latestMeta.Deleted && !latestMeta.IsRemote() { if latestMeta.InlineData() || recreate { inlineBuffers = make([]*bytes.Buffer, len(outDatedDisks)) } erasureInfo := latestMeta.Erasure for partIndex := 0; partIndex < len(latestMeta.Parts); partIndex++ { partSize := latestMeta.Parts[partIndex].Size partActualSize := latestMeta.Parts[partIndex].ActualSize partModTime := latestMeta.Parts[partIndex].ModTime partNumber := latestMeta.Parts[partIndex].Number partIdx := latestMeta.Parts[partIndex].Index partChecksums := latestMeta.Parts[partIndex].Checksums tillOffset := erasure.ShardFileOffset(0, partSize, partSize) readers := make([]io.ReaderAt, len(latestDisks)) checksumAlgo := erasureInfo.GetChecksumInfo(partNumber).Algorithm for i, disk := range latestDisks { if disk == OfflineDisk { continue } checksumInfo := copyPartsMetadata[i].Erasure.GetChecksumInfo(partNumber) partPath := pathJoin(object, srcDataDir, fmt.Sprintf("part.%d", partNumber)) readers[i] = newBitrotReader(disk, copyPartsMetadata[i].Data, bucket, partPath, tillOffset, checksumAlgo, checksumInfo.Hash, erasure.ShardSize()) } writers := make([]io.Writer, len(outDatedDisks)) for i, disk := range outDatedDisks { if disk == OfflineDisk { continue } partPath := pathJoin(tmpID, dstDataDir, fmt.Sprintf("part.%d", partNumber)) if len(inlineBuffers) > 0 { inlineBuffers[i] = bytes.NewBuffer(make([]byte, 0, erasure.ShardFileSize(latestMeta.Size)+32)) writers[i] = newStreamingBitrotWriterBuffer(inlineBuffers[i], DefaultBitrotAlgorithm, erasure.ShardSize()) } else { writers[i] = newBitrotWriter(disk, minioMetaTmpBucket, partPath, tillOffset, DefaultBitrotAlgorithm, erasure.ShardSize()) } } // Heal each part. erasure.Heal() will write the healed // part to .minio/tmp/uuid/ which needs to be renamed // later to the final location. err = erasure.Heal(ctx, writers, readers, partSize) closeBitrotReaders(readers) closeBitrotWriters(writers) if err != nil { return result, err } // outDatedDisks that had write errors should not be // written to for remaining parts, so we nil it out. for i, disk := range outDatedDisks { if disk == OfflineDisk { continue } // A non-nil stale disk which did not receive // a healed part checksum had a write error. if writers[i] == nil { outDatedDisks[i] = nil disksToHealCount-- continue } partsMetadata[i].DataDir = dstDataDir partsMetadata[i].AddObjectPart(partNumber, "", partSize, partActualSize, partModTime, partIdx, partChecksums) partsMetadata[i].Erasure.AddChecksumInfo(ChecksumInfo{ PartNumber: partNumber, Algorithm: checksumAlgo, Hash: bitrotWriterSum(writers[i]), }) if len(inlineBuffers) > 0 && inlineBuffers[i] != nil { partsMetadata[i].Data = inlineBuffers[i].Bytes() partsMetadata[i].SetInlineData() } else { partsMetadata[i].Data = nil } } // If all disks are having errors, we give up. if disksToHealCount == 0 { return result, fmt.Errorf("all drives had write errors, unable to heal %s/%s", bucket, object) } } } defer er.deleteAll(context.Background(), minioMetaTmpBucket, tmpID) // Rename from tmp location to the actual location. for i, disk := range outDatedDisks { if disk == OfflineDisk { continue } // record the index of the updated disks partsMetadata[i].Erasure.Index = i + 1 // Attempt a rename now from healed data to final location. if _, err = disk.RenameData(ctx, minioMetaTmpBucket, tmpID, partsMetadata[i], bucket, object); err != nil { logger.LogIf(ctx, err) return result, err } // - Remove any parts from healed disks after its been inlined. // - Remove any remaining parts from outdated disks from before transition. if recreate || partsMetadata[i].IsRemote() { rmDataDir := partsMetadata[i].DataDir disk.DeleteVol(ctx, pathJoin(bucket, encodeDirObject(object), rmDataDir), true) } for i, v := range result.Before.Drives { if v.Endpoint == disk.String() { result.After.Drives[i].State = madmin.DriveStateOk } } } if !diskMTime.Equal(timeSentinel) && !diskMTime.IsZero() { // Update metadata to indicate special fix. _, err = er.PutObjectMetadata(ctx, bucket, object, ObjectOptions{ NoLock: true, UserDefined: map[string]string{ reservedMetadataPrefixLowerDataShardFix: "true", // another reserved metadata to capture original disk-mtime // captured for this version of the object, to be used // possibly in future to heal other versions if possible. ReservedMetadataPrefixLower + "disk-mtime": diskMTime.String(), }, }) } // Set the size of the object in the heal result result.ObjectSize = latestMeta.Size return result, nil } // checkAbandonedParts will check if an object has abandoned parts, // meaning data-dirs or inlined data that are no longer referenced by the xl.meta // Errors are generally ignored by this function. func (er *erasureObjects) checkAbandonedParts(ctx context.Context, bucket string, object string, opts madmin.HealOpts) (err error) { if !opts.Remove || opts.DryRun { return nil } if globalTrace.NumSubscribers(madmin.TraceHealing) > 0 { startTime := time.Now() defer func() { healTrace(healingMetricCheckAbandonedParts, startTime, bucket, object, nil, err, nil) }() } if !opts.NoLock { lk := er.NewNSLock(bucket, object) lkctx, err := lk.GetLock(ctx, globalOperationTimeout) if err != nil { return err } ctx = lkctx.Context() defer lk.Unlock(lkctx) } var wg sync.WaitGroup for _, disk := range er.getDisks() { if disk != nil { wg.Add(1) go func(disk StorageAPI) { defer wg.Done() _ = disk.CleanAbandonedData(ctx, bucket, object) }(disk) } } wg.Wait() return nil } // healObjectDir - heals object directory specifically, this special call // is needed since we do not have a special backend format for directories. func (er *erasureObjects) healObjectDir(ctx context.Context, bucket, object string, dryRun bool, remove bool) (hr madmin.HealResultItem, err error) { storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // Initialize heal result object hr = madmin.HealResultItem{ Type: madmin.HealItemObject, Bucket: bucket, Object: object, DiskCount: len(storageDisks), ParityBlocks: er.defaultParityCount, DataBlocks: len(storageDisks) - er.defaultParityCount, ObjectSize: 0, } hr.Before.Drives = make([]madmin.HealDriveInfo, len(storageDisks)) hr.After.Drives = make([]madmin.HealDriveInfo, len(storageDisks)) errs := statAllDirs(ctx, storageDisks, bucket, object) danglingObject := isObjectDirDangling(errs) if danglingObject { if !dryRun && remove { var wg sync.WaitGroup // Remove versions in bulk for each disk for index, disk := range storageDisks { if disk == nil { continue } wg.Add(1) go func(index int, disk StorageAPI) { defer wg.Done() _ = disk.Delete(ctx, bucket, object, DeleteOptions{ Recursive: false, Force: false, }) }(index, disk) } wg.Wait() NSUpdated(bucket, object) } } // Prepare object creation in all disks for i, err := range errs { drive := storageEndpoints[i].String() switch err { case nil: hr.Before.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateOk} hr.After.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateOk} case errDiskNotFound: hr.Before.Drives[i] = madmin.HealDriveInfo{State: madmin.DriveStateOffline} hr.After.Drives[i] = madmin.HealDriveInfo{State: madmin.DriveStateOffline} case errVolumeNotFound, errFileNotFound: // Bucket or prefix/directory not found hr.Before.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateMissing} hr.After.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateMissing} default: hr.Before.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateCorrupt} hr.After.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateCorrupt} } } if danglingObject || isAllNotFound(errs) { // Nothing to do, file is already gone. return hr, errFileNotFound } if dryRun { // Quit without try to heal the object dir return hr, nil } for i, err := range errs { if err == errVolumeNotFound || err == errFileNotFound { // Bucket or prefix/directory not found merr := storageDisks[i].MakeVol(ctx, pathJoin(bucket, object)) switch merr { case nil, errVolumeExists: hr.After.Drives[i].State = madmin.DriveStateOk case errDiskNotFound: hr.After.Drives[i].State = madmin.DriveStateOffline default: logger.LogIf(ctx, merr) hr.After.Drives[i].State = madmin.DriveStateCorrupt } } } return hr, nil } // Populates default heal result item entries with possible values when we are returning prematurely. // This is to ensure that in any circumstance we are not returning empty arrays with wrong values. func (er *erasureObjects) defaultHealResult(lfi FileInfo, storageDisks []StorageAPI, storageEndpoints []Endpoint, errs []error, bucket, object, versionID string) madmin.HealResultItem { // Initialize heal result object result := madmin.HealResultItem{ Type: madmin.HealItemObject, Bucket: bucket, Object: object, ObjectSize: lfi.Size, VersionID: versionID, DiskCount: len(storageDisks), } if lfi.IsValid() { result.ParityBlocks = lfi.Erasure.ParityBlocks } else { // Default to most common configuration for erasure blocks. result.ParityBlocks = er.defaultParityCount } result.DataBlocks = len(storageDisks) - result.ParityBlocks for index, disk := range storageDisks { if disk == nil { result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index].String(), State: madmin.DriveStateOffline, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index].String(), State: madmin.DriveStateOffline, }) continue } driveState := madmin.DriveStateCorrupt switch errs[index] { case errFileNotFound, errVolumeNotFound: driveState = madmin.DriveStateMissing case nil: driveState = madmin.DriveStateOk } result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index].String(), State: driveState, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index].String(), State: driveState, }) } return result } // Stat all directories. func statAllDirs(ctx context.Context, storageDisks []StorageAPI, bucket, prefix string) []error { g := errgroup.WithNErrs(len(storageDisks)) for index, disk := range storageDisks { if disk == nil { continue } index := index g.Go(func() error { entries, err := storageDisks[index].ListDir(ctx, bucket, prefix, 1) if err != nil { return err } if len(entries) > 0 { return errVolumeNotEmpty } return nil }, index) } return g.Wait() } // isAllNotFound will return if any element of the error slice is not // errFileNotFound, errFileVersionNotFound or errVolumeNotFound. // A 0 length slice will always return false. func isAllNotFound(errs []error) bool { for _, err := range errs { if err != nil { switch err.Error() { case errFileNotFound.Error(): fallthrough case errVolumeNotFound.Error(): fallthrough case errFileVersionNotFound.Error(): continue } } return false } return len(errs) > 0 } // ObjectDir is considered dangling/corrupted if any only // if total disks - a combination of corrupted and missing // files is lesser than N/2+1 number of disks. // If no files were found false will be returned. func isObjectDirDangling(errs []error) (ok bool) { var found int var notFound int var foundNotEmpty int var otherFound int for _, readErr := range errs { if readErr == nil { found++ } else if readErr == errFileNotFound || readErr == errVolumeNotFound { notFound++ } else if readErr == errVolumeNotEmpty { foundNotEmpty++ } else { otherFound++ } } found = found + foundNotEmpty + otherFound return found < notFound && found > 0 } // Object is considered dangling/corrupted if any only // if total disks - a combination of corrupted and missing // files is lesser than number of data blocks. func isObjectDangling(metaArr []FileInfo, errs []error, dataErrs []error) (validMeta FileInfo, ok bool) { // We can consider an object data not reliable // when xl.meta is not found in read quorum disks. // or when xl.meta is not readable in read quorum disks. danglingErrsCount := func(cerrs []error) (int, int) { var ( notFoundCount int corruptedCount int ) for _, readErr := range cerrs { if errors.Is(readErr, errFileNotFound) || errors.Is(readErr, errFileVersionNotFound) { notFoundCount++ } else if errors.Is(readErr, errFileCorrupt) { corruptedCount++ } } return notFoundCount, corruptedCount } ndataErrs := make([]error, len(dataErrs)) for i := range dataErrs { if errs[i] != dataErrs[i] { // Only count part errors, if the error is not // same as xl.meta error. This is to avoid // double counting when both parts and xl.meta // are not available. ndataErrs[i] = dataErrs[i] } } notFoundMetaErrs, corruptedMetaErrs := danglingErrsCount(errs) notFoundPartsErrs, corruptedPartsErrs := danglingErrsCount(ndataErrs) for _, m := range metaArr { if m.IsValid() { validMeta = m break } } if !validMeta.IsValid() { // We have no idea what this file is, leave it as is. return validMeta, false } if validMeta.Deleted { // notFoundPartsErrs is ignored since // - delete marker does not have any parts return validMeta, corruptedMetaErrs+notFoundMetaErrs > len(errs)/2 } totalErrs := notFoundMetaErrs + corruptedMetaErrs + notFoundPartsErrs + corruptedPartsErrs if validMeta.IsRemote() { // notFoundPartsErrs is ignored since // - transition status of complete has no parts totalErrs = notFoundMetaErrs + corruptedMetaErrs } // We have valid meta, now verify if we have enough files with parity blocks. return validMeta, totalErrs > validMeta.Erasure.ParityBlocks } // HealObject - heal the given object, automatically deletes the object if stale/corrupted if `remove` is true. func (er erasureObjects) HealObject(ctx context.Context, bucket, object, versionID string, opts madmin.HealOpts) (hr madmin.HealResultItem, err error) { // Create context that also contains information about the object and bucket. // The top level handler might not have this information. reqInfo := logger.GetReqInfo(ctx) var newReqInfo *logger.ReqInfo if reqInfo != nil { newReqInfo = logger.NewReqInfo(reqInfo.RemoteHost, reqInfo.UserAgent, reqInfo.DeploymentID, reqInfo.RequestID, reqInfo.API, bucket, object) } else { newReqInfo = logger.NewReqInfo("", "", globalDeploymentID, "", "Heal", bucket, object) } healCtx := logger.SetReqInfo(GlobalContext, newReqInfo) // Healing directories handle it separately. if HasSuffix(object, SlashSeparator) { hr, err := er.healObjectDir(healCtx, bucket, object, opts.DryRun, opts.Remove) return hr, toObjectErr(err, bucket, object) } storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // When versionID is empty, we read directly from the `null` versionID for healing. if versionID == "" { versionID = nullVersionID } // Perform quick read without lock. // This allows to quickly check if all is ok or all are missing. _, errs := readAllFileInfo(healCtx, storageDisks, bucket, object, versionID, false) if isAllNotFound(errs) { err := errFileNotFound if versionID != "" { err = errFileVersionNotFound } // Nothing to do, file is already gone. return er.defaultHealResult(FileInfo{}, storageDisks, storageEndpoints, errs, bucket, object, versionID), toObjectErr(err, bucket, object, versionID) } // Heal the object. hr, err = er.healObject(healCtx, bucket, object, versionID, opts) if errors.Is(err, errFileCorrupt) && opts.ScanMode != madmin.HealDeepScan { // Instead of returning an error when a bitrot error is detected // during a normal heal scan, heal again with bitrot flag enabled. opts.ScanMode = madmin.HealDeepScan hr, err = er.healObject(healCtx, bucket, object, versionID, opts) } return hr, toObjectErr(err, bucket, object, versionID) } // healTrace sends healing results to trace output. func healTrace(funcName healingMetric, startTime time.Time, bucket, object string, opts *madmin.HealOpts, err error, result *madmin.HealResultItem) { tr := madmin.TraceInfo{ TraceType: madmin.TraceHealing, Time: startTime, NodeName: globalLocalNodeName, FuncName: "heal." + funcName.String(), Duration: time.Since(startTime), Path: pathJoin(bucket, decodeDirObject(object)), } if opts != nil { tr.Message = fmt.Sprintf("dry:%v, rm:%v, recreate:%v mode:%v", opts.DryRun, opts.Remove, opts.Recreate, opts.ScanMode) } if err != nil { tr.Error = err.Error() } else { tr.HealResult = result } globalTrace.Publish(tr) }