// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package kms import ( "bytes" "context" "crypto/subtle" "crypto/tls" "crypto/x509" "errors" "fmt" "strings" "sync" "time" "github.com/minio/pkg/v2/env" "github.com/minio/kms-go/kes" "github.com/minio/pkg/v2/certs" ) const ( tlsClientSessionCacheSize = 100 ) // Config contains various KMS-related configuration // parameters - like KMS endpoints or authentication // credentials. type Config struct { // Endpoints contains a list of KMS server // HTTP endpoints. Endpoints []string // DefaultKeyID is the key ID used when // no explicit key ID is specified for // a cryptographic operation. DefaultKeyID string // APIKey is an credential provided by env. var. // to authenticate to a KES server. Either an // API key or a client certificate must be specified. APIKey kes.APIKey // Certificate is the client TLS certificate // to authenticate to KMS via mTLS. Certificate *certs.Certificate // ReloadCertEvents is an event channel that receives // the reloaded client certificate. ReloadCertEvents <-chan tls.Certificate // RootCAs is a set of root CA certificates // to verify the KMS server TLS certificate. RootCAs *x509.CertPool } // NewWithConfig returns a new KMS using the given // configuration. func NewWithConfig(config Config, kmsLogger Logger) (KMS, error) { if len(config.Endpoints) == 0 { return nil, errors.New("kms: no server endpoints") } endpoints := make([]string, len(config.Endpoints)) // Copy => avoid being affect by any changes to the original slice copy(endpoints, config.Endpoints) var client *kes.Client if config.APIKey != nil { cert, err := kes.GenerateCertificate(config.APIKey) if err != nil { return nil, err } client = kes.NewClientWithConfig("", &tls.Config{ MinVersion: tls.VersionTLS12, Certificates: []tls.Certificate{cert}, RootCAs: config.RootCAs, ClientSessionCache: tls.NewLRUClientSessionCache(tlsClientSessionCacheSize), }) } else { client = kes.NewClientWithConfig("", &tls.Config{ MinVersion: tls.VersionTLS12, Certificates: []tls.Certificate{config.Certificate.Get()}, RootCAs: config.RootCAs, ClientSessionCache: tls.NewLRUClientSessionCache(tlsClientSessionCacheSize), }) } client.Endpoints = endpoints c := &kesClient{ client: client, defaultKeyID: config.DefaultKeyID, } go func() { if config.Certificate == nil || config.ReloadCertEvents == nil { return } var prevCertificate tls.Certificate for { certificate, ok := <-config.ReloadCertEvents if !ok { return } sameCert := len(certificate.Certificate) == len(prevCertificate.Certificate) for i, b := range certificate.Certificate { if !sameCert { break } sameCert = sameCert && bytes.Equal(b, prevCertificate.Certificate[i]) } // Do not reload if its the same cert as before. if !sameCert { client := kes.NewClientWithConfig("", &tls.Config{ MinVersion: tls.VersionTLS12, Certificates: []tls.Certificate{certificate}, RootCAs: config.RootCAs, ClientSessionCache: tls.NewLRUClientSessionCache(tlsClientSessionCacheSize), }) client.Endpoints = endpoints c.lock.Lock() c.client = client c.lock.Unlock() prevCertificate = certificate } } }() go c.refreshKMSMasterKeyCache(kmsLogger) return c, nil } // Request KES keep an up-to-date copy of the KMS master key to allow minio to start up even if KMS is down. The // cached key may still be evicted if the period of this function is longer than that of KES .cache.expiry.unused func (c *kesClient) refreshKMSMasterKeyCache(logger Logger) { ctx := context.Background() defaultCacheInterval := 10 cacheInterval, err := env.GetInt("EnvKESKeyCacheInterval", defaultCacheInterval) if err != nil { cacheInterval = defaultCacheInterval } timer := time.NewTimer(time.Duration(cacheInterval) * time.Second) defer timer.Stop() for { select { case <-ctx.Done(): return case <-timer.C: c.RefreshKey(ctx, logger) // Reset for the next interval timer.Reset(time.Duration(cacheInterval) * time.Second) } } } type kesClient struct { lock sync.RWMutex defaultKeyID string client *kes.Client } var ( // compiler checks _ KMS = (*kesClient)(nil) _ KeyManager = (*kesClient)(nil) _ IdentityManager = (*kesClient)(nil) _ PolicyManager = (*kesClient)(nil) ) // Stat returns the current KES status containing a // list of KES endpoints and the default key ID. func (c *kesClient) Stat(ctx context.Context) (Status, error) { c.lock.RLock() defer c.lock.RUnlock() st, err := c.client.Status(ctx) if err != nil { return Status{}, err } endpoints := make([]string, len(c.client.Endpoints)) copy(endpoints, c.client.Endpoints) return Status{ Name: "KES", Endpoints: endpoints, DefaultKey: c.defaultKeyID, Details: st, }, nil } // IsLocal returns true if the KMS is a local implementation func (c *kesClient) IsLocal() bool { return env.IsSet(EnvKMSSecretKey) } // List returns an array of local KMS Names func (c *kesClient) List() []kes.KeyInfo { var kmsSecret []kes.KeyInfo envKMSSecretKey := env.Get(EnvKMSSecretKey, "") values := strings.SplitN(envKMSSecretKey, ":", 2) if len(values) == 2 { kmsSecret = []kes.KeyInfo{ { Name: values[0], }, } } return kmsSecret } // Metrics retrieves server metrics in the Prometheus exposition format. func (c *kesClient) Metrics(ctx context.Context) (kes.Metric, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.Metrics(ctx) } // Version retrieves version information func (c *kesClient) Version(ctx context.Context) (string, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.Version(ctx) } // APIs retrieves a list of supported API endpoints func (c *kesClient) APIs(ctx context.Context) ([]kes.API, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.APIs(ctx) } // CreateKey tries to create a new key at the KMS with the // given key ID. // // If the a key with the same keyID already exists then // CreateKey returns kes.ErrKeyExists. func (c *kesClient) CreateKey(ctx context.Context, keyID string) error { c.lock.RLock() defer c.lock.RUnlock() return c.client.CreateKey(ctx, keyID) } // DeleteKey deletes a key at the KMS with the given key ID. // Please note that is a dangerous operation. // Once a key has been deleted all data that has been encrypted with it cannot be decrypted // anymore, and therefore, is lost. func (c *kesClient) DeleteKey(ctx context.Context, keyID string) error { c.lock.RLock() defer c.lock.RUnlock() return c.client.DeleteKey(ctx, keyID) } // ListKeys returns an iterator over all key names. func (c *kesClient) ListKeys(ctx context.Context) (*kes.ListIter[string], error) { c.lock.RLock() defer c.lock.RUnlock() return &kes.ListIter[string]{ NextFunc: c.client.ListKeys, }, nil } // GenerateKey generates a new data encryption key using // the key at the KES server referenced by the key ID. // // The default key ID will be used if keyID is empty. // // The context is associated and tied to the generated DEK. // The same context must be provided when the generated // key should be decrypted. func (c *kesClient) GenerateKey(ctx context.Context, keyID string, cryptoCtx Context) (DEK, error) { c.lock.RLock() defer c.lock.RUnlock() if keyID == "" { keyID = c.defaultKeyID } ctxBytes, err := cryptoCtx.MarshalText() if err != nil { return DEK{}, err } dek, err := c.client.GenerateKey(ctx, keyID, ctxBytes) if err != nil { return DEK{}, err } return DEK{ KeyID: keyID, Plaintext: dek.Plaintext, Ciphertext: dek.Ciphertext, }, nil } // ImportKey imports a cryptographic key into the KMS. func (c *kesClient) ImportKey(ctx context.Context, keyID string, bytes []byte) error { c.lock.RLock() defer c.lock.RUnlock() return c.client.ImportKey(ctx, keyID, &kes.ImportKeyRequest{ Key: bytes, }) } // EncryptKey Encrypts and authenticates a (small) plaintext with the cryptographic key // The plaintext must not exceed 1 MB func (c *kesClient) EncryptKey(keyID string, plaintext []byte, ctx Context) ([]byte, error) { c.lock.RLock() defer c.lock.RUnlock() ctxBytes, err := ctx.MarshalText() if err != nil { return nil, err } return c.client.Encrypt(context.Background(), keyID, plaintext, ctxBytes) } // DecryptKey decrypts the ciphertext with the key at the KES // server referenced by the key ID. The context must match the // context value used to generate the ciphertext. func (c *kesClient) DecryptKey(keyID string, ciphertext []byte, ctx Context) ([]byte, error) { c.lock.RLock() defer c.lock.RUnlock() ctxBytes, err := ctx.MarshalText() if err != nil { return nil, err } return c.client.Decrypt(context.Background(), keyID, ciphertext, ctxBytes) } func (c *kesClient) DecryptAll(ctx context.Context, keyID string, ciphertexts [][]byte, contexts []Context) ([][]byte, error) { c.lock.RLock() defer c.lock.RUnlock() plaintexts := make([][]byte, 0, len(ciphertexts)) for i := range ciphertexts { ctxBytes, err := contexts[i].MarshalText() if err != nil { return nil, err } plaintext, err := c.client.Decrypt(ctx, keyID, ciphertexts[i], ctxBytes) if err != nil { return nil, err } plaintexts = append(plaintexts, plaintext) } return plaintexts, nil } // HMAC generates the HMAC checksum of the given msg using the key // with the given keyID at the KMS. func (c *kesClient) HMAC(ctx context.Context, keyID string, msg []byte) ([]byte, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.HMAC(context.Background(), keyID, msg) } // DescribePolicy describes a policy by returning its metadata. // e.g. who created the policy at which point in time. func (c *kesClient) DescribePolicy(ctx context.Context, policy string) (*kes.PolicyInfo, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.DescribePolicy(ctx, policy) } // ListPolicies returns an iterator over all policy names. func (c *kesClient) ListPolicies(ctx context.Context) (*kes.ListIter[string], error) { c.lock.RLock() defer c.lock.RUnlock() return &kes.ListIter[string]{ NextFunc: c.client.ListPolicies, }, nil } // GetPolicy gets a policy from KMS. func (c *kesClient) GetPolicy(ctx context.Context, policy string) (*kes.Policy, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.GetPolicy(ctx, policy) } // DescribeIdentity describes an identity by returning its metadata. // e.g. which policy is currently assigned and whether its an admin identity. func (c *kesClient) DescribeIdentity(ctx context.Context, identity string) (*kes.IdentityInfo, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.DescribeIdentity(ctx, kes.Identity(identity)) } // DescribeSelfIdentity describes the identity issuing the request. // It infers the identity from the TLS client certificate used to authenticate. // It returns the identity and policy information for the client identity. func (c *kesClient) DescribeSelfIdentity(ctx context.Context) (*kes.IdentityInfo, *kes.Policy, error) { c.lock.RLock() defer c.lock.RUnlock() return c.client.DescribeSelf(ctx) } // ListIdentities returns an iterator over all identities. func (c *kesClient) ListIdentities(ctx context.Context) (*kes.ListIter[kes.Identity], error) { c.lock.RLock() defer c.lock.RUnlock() return &kes.ListIter[kes.Identity]{ NextFunc: c.client.ListIdentities, }, nil } // Verify verifies all KMS endpoints and returns details func (c *kesClient) Verify(ctx context.Context) []VerifyResult { c.lock.RLock() defer c.lock.RUnlock() results := []VerifyResult{} kmsContext := Context{"MinIO admin API": "ServerInfoHandler"} // Context for a test key operation for _, endpoint := range c.client.Endpoints { client := kes.Client{ Endpoints: []string{endpoint}, HTTPClient: c.client.HTTPClient, } // 1. Get stats for the KES instance state, err := client.Status(ctx) if err != nil { results = append(results, VerifyResult{Status: "offline", Endpoint: endpoint}) continue } // 2. Generate a new key using the KMS. kmsCtx, err := kmsContext.MarshalText() if err != nil { results = append(results, VerifyResult{Status: "offline", Endpoint: endpoint}) continue } result := VerifyResult{Status: "online", Endpoint: endpoint, Version: state.Version} key, err := client.GenerateKey(ctx, env.Get(EnvKESKeyName, ""), kmsCtx) if err != nil { result.Encrypt = fmt.Sprintf("Encryption failed: %v", err) } else { result.Encrypt = "success" } // 3. Verify that we can indeed decrypt the (encrypted) key decryptedKey, err := client.Decrypt(ctx, env.Get(EnvKESKeyName, ""), key.Ciphertext, kmsCtx) switch { case err != nil: result.Decrypt = fmt.Sprintf("Decryption failed: %v", err) case subtle.ConstantTimeCompare(key.Plaintext, decryptedKey) != 1: result.Decrypt = "Decryption failed: decrypted key does not match generated key" default: result.Decrypt = "success" } results = append(results, result) } return results } // Logger interface permits access to module specific logging, in this case, for KMS type Logger interface { LogOnceIf(ctx context.Context, subsystem string, err error, id string, errKind ...interface{}) } // RefreshKey checks the validity of the KMS Master Key func (c *kesClient) RefreshKey(ctx context.Context, logger Logger) bool { c.lock.RLock() defer c.lock.RUnlock() validKey := false kmsContext := Context{"MinIO admin API": "ServerInfoHandler"} // Context for a test key operation for _, endpoint := range c.client.Endpoints { client := kes.Client{ Endpoints: []string{endpoint}, HTTPClient: c.client.HTTPClient, } // 1. Generate a new key using the KMS. kmsCtx, err := kmsContext.MarshalText() if err != nil { logger.LogOnceIf(ctx, "kms", err, "refresh-kms-master-key") validKey = false break } _, err = client.GenerateKey(ctx, env.Get(EnvKESKeyName, ""), kmsCtx) if err != nil { logger.LogOnceIf(ctx, "kms", err, "refresh-kms-master-key") validKey = false break } if !validKey { validKey = true } } return validKey }