/**********************************************************************
  Copyright(c) 2011-2014 Intel Corporation All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in
      the documentation and/or other materials provided with the
      distribution.
    * Neither the name of Intel Corporation nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/

#include <limits.h>
#include <stdint.h>
#include <string.h>             // for memset
#include "ec-code.h"
#include "ec-base.h"            // for GF tables
#include "ec-ctypes.h"

uint8_t gf_mul(uint8_t a, uint8_t b)
{
#ifndef GF_LARGE_TABLES
        int i;

        if ((a == 0) || (b == 0))
                return 0;

        return gff_base[(i = gflog_base[a] + gflog_base[b]) > 254 ? i - 255 : i];
#else
        return gf_mul_table_base[b * 256 + a];
#endif
}

uint8_t gf_inv(uint8_t a)
{
#ifndef GF_LARGE_TABLES
        if (a == 0)
                return 0;

        return gff_base[255 - gflog_base[a]];
#else
        return gf_inv_table_base[a];
#endif
}

void gf_gen_rs_matrix(uint8_t *a, int m, int k)
{
        int i, j;
        uint8_t p, gen = 1;

        memset(a, 0, k * m);
        for (i = 0; i < k; i++)
                a[k * i + i] = 1;

        for (i = k; i < m; i++) {
                p = 1;
                for (j = 0; j < k; j++) {
                        a[k * i + j] = p;
                        p = gf_mul(p, gen);
                }
                gen = gf_mul(gen, 2);
        }
}

void gf_gen_cauchy1_matrix(uint8_t *a, int m, int k)
{
        int i, j;
        uint8_t *p;

        // Identity matrix in high position
        memset(a, 0, k * m);
        for (i = 0; i < k; i++)
                a[k * i + i] = 1;

        // For the rest choose 1/(i + j) | i != j
        p = &a[k * k];
        for (i = k; i < m; i++)
                for (j = 0; j < k; j++)
                        *p++ = gf_inv(i ^ j);

}

int gf_invert_matrix(uint8_t *in_mat, uint8_t *out_mat, const int n)
{
        int i, j, k;
        uint8_t temp;

        // Set out_mat[] to the identity matrix
        for (i = 0; i < n * n; i++)     // memset(out_mat, 0, n*n)
                out_mat[i] = 0;

        for (i = 0; i < n; i++)
                out_mat[i * n + i] = 1;

        // Inverse
        for (i = 0; i < n; i++) {
                // Check for 0 in pivot element
                if (in_mat[i * n + i] == 0) {
                        // Find a row with non-zero in current column and swap
                        for (j = i + 1; j < n; j++)
                                if (in_mat[j * n + i])
                                        break;

                        if (j == n)     // Couldn't find means it's singular
                                return -1;

                        for (k = 0; k < n; k++) {       // Swap rows i,j
                                temp = in_mat[i * n + k];
                                in_mat[i * n + k] = in_mat[j * n + k];
                                in_mat[j * n + k] = temp;

                                temp = out_mat[i * n + k];
                                out_mat[i * n + k] = out_mat[j * n + k];
                                out_mat[j * n + k] = temp;
                        }
                }

                temp = gf_inv(in_mat[i * n + i]);       // 1/pivot
                for (j = 0; j < n; j++) {       // Scale row i by 1/pivot
                        in_mat[i * n + j] = gf_mul(in_mat[i * n + j], temp);
                        out_mat[i * n + j] = gf_mul(out_mat[i * n + j], temp);
                }

                for (j = 0; j < n; j++) {
                        if (j == i)
                                continue;

                        temp = in_mat[j * n + i];
                        for (k = 0; k < n; k++) {
                                out_mat[j * n + k] ^= gf_mul(temp, out_mat[i * n + k]);
                                in_mat[j * n + k] ^= gf_mul(temp, in_mat[i * n + k]);
                        }
                }
        }
        return 0;
}

// Calculates const table gftbl in GF(2^8) from single input A
// gftbl(A) = {A{00}, A{01}, A{02}, ... , A{0f} }, {A{00}, A{10}, A{20}, ... , A{f0} }

void gf_vect_mul_init(uint8_t c, uint8_t *tbl)
{
        uint8_t c2 = (c << 1) ^ ((c & 0x80) ? 0x1d : 0);  //Mult by GF{2}
        uint8_t c4 = (c2 << 1) ^ ((c2 & 0x80) ? 0x1d : 0);        //Mult by GF{2}
        uint8_t c8 = (c4 << 1) ^ ((c4 & 0x80) ? 0x1d : 0);        //Mult by GF{2}

#if __WORDSIZE == 64 || _WIN64 || __x86_64__
        unsigned long long v1, v2, v4, v8, *t;
        unsigned long long v10, v20, v40, v80;
        uint8_t c17, c18, c20, c24;

        t = (unsigned long long *)tbl;

        v1 = c * 0x0100010001000100ull;
        v2 = c2 * 0x0101000001010000ull;
        v4 = c4 * 0x0101010100000000ull;
        v8 = c8 * 0x0101010101010101ull;

        v4 = v1 ^ v2 ^ v4;
        t[0] = v4;
        t[1] = v8 ^ v4;

        c17 = (c8 << 1) ^ ((c8 & 0x80) ? 0x1d : 0);     //Mult by GF{2}
        c18 = (c17 << 1) ^ ((c17 & 0x80) ? 0x1d : 0);   //Mult by GF{2}
        c20 = (c18 << 1) ^ ((c18 & 0x80) ? 0x1d : 0);   //Mult by GF{2}
        c24 = (c20 << 1) ^ ((c20 & 0x80) ? 0x1d : 0);   //Mult by GF{2}

        v10 = c17 * 0x0100010001000100ull;
        v20 = c18 * 0x0101000001010000ull;
        v40 = c20 * 0x0101010100000000ull;
        v80 = c24 * 0x0101010101010101ull;

        v40 = v10 ^ v20 ^ v40;
        t[2] = v40;
        t[3] = v80 ^ v40;

#else // 32-bit or other
        uint8_t c3, c5, c6, c7, c9, c10, c11, c12, c13, c14, c15;
        uint8_t c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30,
            c31;

        c3 = c2 ^ c;
        c5 = c4 ^ c;
        c6 = c4 ^ c2;
        c7 = c4 ^ c3;

        c9 = c8 ^ c;
        c10 = c8 ^ c2;
        c11 = c8 ^ c3;
        c12 = c8 ^ c4;
        c13 = c8 ^ c5;
        c14 = c8 ^ c6;
        c15 = c8 ^ c7;

        tbl[0] = 0;
        tbl[1] = c;
        tbl[2] = c2;
        tbl[3] = c3;
        tbl[4] = c4;
        tbl[5] = c5;
        tbl[6] = c6;
        tbl[7] = c7;
        tbl[8] = c8;
        tbl[9] = c9;
        tbl[10] = c10;
        tbl[11] = c11;
        tbl[12] = c12;
        tbl[13] = c13;
        tbl[14] = c14;
        tbl[15] = c15;

        c17 = (c8 << 1) ^ ((c8 & 0x80) ? 0x1d : 0);     //Mult by GF{2}
        c18 = (c17 << 1) ^ ((c17 & 0x80) ? 0x1d : 0);   //Mult by GF{2}
        c19 = c18 ^ c17;
        c20 = (c18 << 1) ^ ((c18 & 0x80) ? 0x1d : 0);   //Mult by GF{2}
        c21 = c20 ^ c17;
        c22 = c20 ^ c18;
        c23 = c20 ^ c19;
        c24 = (c20 << 1) ^ ((c20 & 0x80) ? 0x1d : 0);   //Mult by GF{2}
        c25 = c24 ^ c17;
        c26 = c24 ^ c18;
        c27 = c24 ^ c19;
        c28 = c24 ^ c20;
        c29 = c24 ^ c21;
        c30 = c24 ^ c22;
        c31 = c24 ^ c23;

        tbl[16] = 0;
        tbl[17] = c17;
        tbl[18] = c18;
        tbl[19] = c19;
        tbl[20] = c20;
        tbl[21] = c21;
        tbl[22] = c22;
        tbl[23] = c23;
        tbl[24] = c24;
        tbl[25] = c25;
        tbl[26] = c26;
        tbl[27] = c27;
        tbl[28] = c28;
        tbl[29] = c29;
        tbl[30] = c30;
        tbl[31] = c31;

#endif //__WORDSIZE == 64 || _WIN64 || __x86_64__
}

void gf_vect_dot_prod_base(int len, int vlen, uint8_t *v,
                           uint8_t **src, uint8_t *dest)
{
        int i, j;
        uint8_t s;
        for (i = 0; i < len; i++) {
                s = 0;
                for (j = 0; j < vlen; j++)
                        s ^= gf_mul(src[j][i], v[j * 32 + 1]);

                dest[i] = s;
        }
}

void ec_encode_data_base(int len, int srcs, int dests, uint8_t *v,
                         uint8_t **src, uint8_t **dest)
{
        int i, j, l;
        uint8_t s;

        for (l = 0; l < dests; l++) {
                for (i = 0; i < len; i++) {
                        s = 0;
                        for (j = 0; j < srcs; j++)
                                s ^= gf_mul(src[j][i], v[j * 32 + l * srcs * 32 + 1]);

                        dest[l][i] = s;
                }
        }
}

void gf_vect_mul_base(int len, uint8_t *a, uint8_t *src, uint8_t *dest)
{
        //2nd element of table array is ref value used to fill it in
        uint8_t c = a[1];
        while (len-- > 0)
                *dest++ = gf_mul(c, *src++);
}

struct slver {
        UINT16 snum;
        UINT8 ver;
        UINT8 core;
};

// Version info
struct slver gf_vect_mul_init_slver_00020035;
struct slver gf_vect_mul_init_slver = { 0x0035, 0x02, 0x00 };

struct slver ec_encode_data_base_slver_00010135;
struct slver ec_encode_data_base_slver = { 0x0135, 0x01, 0x00 };

struct slver gf_vect_mul_base_slver_00010136;
struct slver gf_vect_mul_base_slver = { 0x0136, 0x01, 0x00 };

struct slver gf_vect_dot_prod_base_slver_00010137;
struct slver gf_vect_dot_prod_base_slver = { 0x0137, 0x01, 0x00 };