// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package cmd import ( "bufio" "context" "crypto/hmac" "crypto/rand" "crypto/sha256" "crypto/subtle" "encoding/binary" "encoding/hex" "errors" "fmt" "io" "net/http" "path" "strconv" "strings" "github.com/minio/kes" "github.com/minio/minio/internal/crypto" "github.com/minio/minio/internal/etag" "github.com/minio/minio/internal/fips" xhttp "github.com/minio/minio/internal/http" "github.com/minio/minio/internal/kms" "github.com/minio/minio/internal/logger" "github.com/minio/sio" ) var ( // AWS errors for invalid SSE-C requests. errEncryptedObject = errors.New("The object was stored using a form of SSE") errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied errKMSNotConfigured = errors.New("KMS not configured for a server side encrypted object") errKMSKeyNotFound = errors.New("Invalid KMS keyId") // Additional MinIO errors for SSE-C requests. errObjectTampered = errors.New("The requested object was modified and may be compromised") // error returned when invalid encryption parameters are specified errInvalidEncryptionParameters = errors.New("The encryption parameters are not applicable to this object") ) const ( // SSECustomerKeySize is the size of valid client provided encryption keys in bytes. // Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes. SSECustomerKeySize = 32 // SSEIVSize is the size of the IV data SSEIVSize = 32 // 32 bytes // SSEDAREPackageBlockSize - SSE dare package block size. SSEDAREPackageBlockSize = 64 * 1024 // 64KiB bytes // SSEDAREPackageMetaSize - SSE dare package meta padding bytes. SSEDAREPackageMetaSize = 32 // 32 bytes ) // KMSKeyID returns in AWS compatible KMS KeyID() format. func (o *ObjectInfo) KMSKeyID() string { return kmsKeyIDFromMetadata(o.UserDefined) } // KMSKeyID returns in AWS compatible KMS KeyID() format. func (o *MultipartInfo) KMSKeyID() string { return kmsKeyIDFromMetadata(o.UserDefined) } // kmsKeyIDFromMetadata returns any AWS S3 KMS key ID in the // metadata, if any. It returns an empty ID if no key ID is // present. func kmsKeyIDFromMetadata(metadata map[string]string) string { const ARNPrefix = "arn:aws:kms:" if len(metadata) == 0 { return "" } kmsID, ok := metadata[crypto.MetaKeyID] if !ok { return "" } if strings.HasPrefix(kmsID, ARNPrefix) { return kmsID } return ARNPrefix + kmsID } // DecryptETags decryptes the ETag of all ObjectInfos using the KMS. // // It adjusts the size of all encrypted objects since encrypted // objects are slightly larger due to encryption overhead. // Further, it decrypts all single-part SSE-S3 encrypted objects // and formats ETags of SSE-C / SSE-KMS encrypted objects to // be AWS S3 compliant. // // DecryptETags uses a KMS bulk decryption API, if available, which // is more efficient than decrypting ETags sequentually. func DecryptETags(ctx context.Context, KMS kms.KMS, objects []ObjectInfo) error { const BatchSize = 250 // We process the objects in batches - 250 is a reasonable default. var ( metadata = make([]map[string]string, 0, BatchSize) buckets = make([]string, 0, BatchSize) names = make([]string, 0, BatchSize) ) for len(objects) > 0 { N := BatchSize if len(objects) < BatchSize { N = len(objects) } batch := objects[:N] // We have to decrypt only ETags of SSE-S3 single-part // objects. // Therefore, we remember which objects (there index) // in the current batch are single-part SSE-S3 objects. metadata = metadata[:0:N] buckets = buckets[:0:N] names = names[:0:N] SSES3SinglePartObjects := make(map[int]bool) for i, object := range batch { if kind, ok := crypto.IsEncrypted(object.UserDefined); ok && kind == crypto.S3 && !crypto.IsMultiPart(object.UserDefined) { SSES3SinglePartObjects[i] = true metadata = append(metadata, object.UserDefined) buckets = append(buckets, object.Bucket) names = append(names, object.Name) } } // If there are no SSE-S3 single-part objects // we can skip the decryption process. However, // we still have to adjust the size and ETag // of SSE-C and SSE-KMS objects. if len(SSES3SinglePartObjects) == 0 { for i := range batch { size, err := batch[i].GetActualSize() if err != nil { return err } batch[i].Size = size if _, ok := crypto.IsEncrypted(batch[i].UserDefined); ok { ETag, err := etag.Parse(batch[i].ETag) if err != nil { return err } batch[i].ETag = ETag.Format().String() } } objects = objects[N:] continue } // There is at least one SSE-S3 single-part object. // For all SSE-S3 single-part objects we have to // fetch their decryption keys. We do this using // a Bulk-Decryption API call, if available. keys, err := crypto.S3.UnsealObjectKeys(ctx, KMS, metadata, buckets, names) if err != nil { return err } // Now, we have to decrypt the ETags of SSE-S3 single-part // objects and adjust the size and ETags of all encrypted // objects. for i := range batch { size, err := batch[i].GetActualSize() if err != nil { return err } batch[i].Size = size if _, ok := crypto.IsEncrypted(batch[i].UserDefined); ok { ETag, err := etag.Parse(batch[i].ETag) if err != nil { return err } if SSES3SinglePartObjects[i] && ETag.IsEncrypted() { ETag, err = etag.Decrypt(keys[0][:], ETag) if err != nil { return err } keys = keys[1:] } batch[i].ETag = ETag.Format().String() } } objects = objects[N:] } return nil } // isMultipart returns true if the current object is // uploaded by the user using multipart mechanism: // initiate new multipart, upload part, complete upload func (o *ObjectInfo) isMultipart() bool { if len(o.Parts) == 0 { return false } _, encrypted := crypto.IsEncrypted(o.UserDefined) if encrypted { if !crypto.IsMultiPart(o.UserDefined) { return false } for _, part := range o.Parts { _, err := sio.DecryptedSize(uint64(part.Size)) if err != nil { return false } } } // Further check if this object is uploaded using multipart mechanism // by the user and it is not about Erasure internally splitting the // object into parts in PutObject() return !(o.backendType == BackendErasure && len(o.ETag) == 32) } // ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request. // It returns the client provided key on success. func ParseSSECopyCustomerRequest(h http.Header, metadata map[string]string) (key []byte, err error) { if crypto.S3.IsEncrypted(metadata) && crypto.SSECopy.IsRequested(h) { return nil, crypto.ErrIncompatibleEncryptionMethod } k, err := crypto.SSECopy.ParseHTTP(h) return k[:], err } // ParseSSECustomerRequest parses the SSE-C header fields of the provided request. // It returns the client provided key on success. func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) { return ParseSSECustomerHeader(r.Header) } // ParseSSECustomerHeader parses the SSE-C header fields and returns // the client provided key on success. func ParseSSECustomerHeader(header http.Header) (key []byte, err error) { if crypto.S3.IsRequested(header) && crypto.SSEC.IsRequested(header) { return key, crypto.ErrIncompatibleEncryptionMethod } k, err := crypto.SSEC.ParseHTTP(header) return k[:], err } // This function rotates old to new key. func rotateKey(oldKey []byte, newKeyID string, newKey []byte, bucket, object string, metadata map[string]string, ctx kms.Context) error { kind, _ := crypto.IsEncrypted(metadata) switch kind { case crypto.S3: if GlobalKMS == nil { return errKMSNotConfigured } keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata) if err != nil { return err } oldKey, err := GlobalKMS.DecryptKey(keyID, kmsKey, kms.Context{bucket: path.Join(bucket, object)}) if err != nil { return err } var objectKey crypto.ObjectKey if err = objectKey.Unseal(oldKey, sealedKey, crypto.S3.String(), bucket, object); err != nil { return err } newKey, err := GlobalKMS.GenerateKey("", kms.Context{bucket: path.Join(bucket, object)}) if err != nil { return err } sealedKey = objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object) crypto.S3.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey) return nil case crypto.S3KMS: if GlobalKMS == nil { return errKMSNotConfigured } objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object) if err != nil { return err } if len(ctx) == 0 { _, _, _, ctx, err = crypto.S3KMS.ParseMetadata(metadata) if err != nil { return err } } // If the context does not contain the bucket key // we must add it for key generation. However, // the context must be stored exactly like the // client provided it. Therefore, we create a copy // of the client provided context and add the bucket // key, if not present. kmsCtx := kms.Context{} for k, v := range ctx { kmsCtx[k] = v } if _, ok := kmsCtx[bucket]; !ok { kmsCtx[bucket] = path.Join(bucket, object) } newKey, err := GlobalKMS.GenerateKey(newKeyID, kmsCtx) if err != nil { return err } sealedKey := objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object) crypto.S3KMS.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey, ctx) return nil case crypto.SSEC: sealedKey, err := crypto.SSEC.ParseMetadata(metadata) if err != nil { return err } var objectKey crypto.ObjectKey if err = objectKey.Unseal(oldKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil { if subtle.ConstantTimeCompare(oldKey, newKey) == 1 { return errInvalidSSEParameters // AWS returns special error for equal but invalid keys. } return crypto.ErrInvalidCustomerKey // To provide strict AWS S3 compatibility we return: access denied. } if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && sealedKey.Algorithm == crypto.SealAlgorithm { return nil // don't rotate on equal keys if seal algorithm is latest } sealedKey = objectKey.Seal(newKey, sealedKey.IV, crypto.SSEC.String(), bucket, object) crypto.SSEC.CreateMetadata(metadata, sealedKey) return nil default: return errObjectTampered } } func newEncryptMetadata(kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, ctx kms.Context) (crypto.ObjectKey, error) { var sealedKey crypto.SealedKey switch kind { case crypto.S3: if GlobalKMS == nil { return crypto.ObjectKey{}, errKMSNotConfigured } key, err := GlobalKMS.GenerateKey("", kms.Context{bucket: path.Join(bucket, object)}) if err != nil { return crypto.ObjectKey{}, err } objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader) sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object) crypto.S3.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey) return objectKey, nil case crypto.S3KMS: if GlobalKMS == nil { return crypto.ObjectKey{}, errKMSNotConfigured } // If the context does not contain the bucket key // we must add it for key generation. However, // the context must be stored exactly like the // client provided it. Therefore, we create a copy // of the client provided context and add the bucket // key, if not present. kmsCtx := kms.Context{} for k, v := range ctx { kmsCtx[k] = v } if _, ok := kmsCtx[bucket]; !ok { kmsCtx[bucket] = path.Join(bucket, object) } key, err := GlobalKMS.GenerateKey(keyID, kmsCtx) if err != nil { if errors.Is(err, kes.ErrKeyNotFound) { return crypto.ObjectKey{}, errKMSKeyNotFound } return crypto.ObjectKey{}, err } objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader) sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object) crypto.S3KMS.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey, ctx) return objectKey, nil case crypto.SSEC: objectKey := crypto.GenerateKey(key, rand.Reader) sealedKey = objectKey.Seal(key, crypto.GenerateIV(rand.Reader), crypto.SSEC.String(), bucket, object) crypto.SSEC.CreateMetadata(metadata, sealedKey) return objectKey, nil default: return crypto.ObjectKey{}, fmt.Errorf("encryption type '%v' not supported", kind) } } func newEncryptReader(content io.Reader, kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, ctx kms.Context) (io.Reader, crypto.ObjectKey, error) { objectEncryptionKey, err := newEncryptMetadata(kind, keyID, key, bucket, object, metadata, ctx) if err != nil { return nil, crypto.ObjectKey{}, err } reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey[:], MinVersion: sio.Version20, CipherSuites: fips.DARECiphers()}) if err != nil { return nil, crypto.ObjectKey{}, crypto.ErrInvalidCustomerKey } return reader, objectEncryptionKey, nil } // set new encryption metadata from http request headers for SSE-C and generated key from KMS in the case of // SSE-S3 func setEncryptionMetadata(r *http.Request, bucket, object string, metadata map[string]string) (err error) { var ( key []byte keyID string ctx kms.Context ) kind, _ := crypto.IsRequested(r.Header) switch kind { case crypto.SSEC: key, err = ParseSSECustomerRequest(r) if err != nil { return err } case crypto.S3KMS: keyID, ctx, err = crypto.S3KMS.ParseHTTP(r.Header) if err != nil { return err } } _, err = newEncryptMetadata(kind, keyID, key, bucket, object, metadata, ctx) return } // EncryptRequest takes the client provided content and encrypts the data // with the client provided key. It also marks the object as client-side-encrypted // and sets the correct headers. func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, crypto.ObjectKey, error) { if r.ContentLength > encryptBufferThreshold { // The encryption reads in blocks of 64KB. // We add a buffer on bigger files to reduce the number of syscalls upstream. content = bufio.NewReaderSize(content, encryptBufferSize) } var ( key []byte keyID string ctx kms.Context err error ) kind, _ := crypto.IsRequested(r.Header) if kind == crypto.SSEC { key, err = ParseSSECustomerRequest(r) if err != nil { return nil, crypto.ObjectKey{}, err } } if kind == crypto.S3KMS { keyID, ctx, err = crypto.S3KMS.ParseHTTP(r.Header) if err != nil { return nil, crypto.ObjectKey{}, err } } return newEncryptReader(content, kind, keyID, key, bucket, object, metadata, ctx) } func decryptObjectInfo(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) { switch kind, _ := crypto.IsEncrypted(metadata); kind { case crypto.S3: var KMS kms.KMS = GlobalKMS if isCacheEncrypted(metadata) { KMS = globalCacheKMS } if KMS == nil { return nil, errKMSNotConfigured } objectKey, err := crypto.S3.UnsealObjectKey(KMS, metadata, bucket, object) if err != nil { return nil, err } return objectKey[:], nil case crypto.S3KMS: if GlobalKMS == nil { return nil, errKMSNotConfigured } objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object) if err != nil { return nil, err } return objectKey[:], nil case crypto.SSEC: sealedKey, err := crypto.SSEC.ParseMetadata(metadata) if err != nil { return nil, err } var objectKey crypto.ObjectKey if err = objectKey.Unseal(key, sealedKey, crypto.SSEC.String(), bucket, object); err != nil { return nil, err } return objectKey[:], nil default: return nil, errObjectTampered } } // Adding support for reader based interface // DecryptRequestWithSequenceNumberR - same as // DecryptRequestWithSequenceNumber but with a reader func DecryptRequestWithSequenceNumberR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) { if crypto.SSEC.IsEncrypted(metadata) { key, err := ParseSSECustomerHeader(h) if err != nil { return nil, err } return newDecryptReader(client, key, bucket, object, seqNumber, metadata) } return newDecryptReader(client, nil, bucket, object, seqNumber, metadata) } // DecryptCopyRequestR - same as DecryptCopyRequest, but with a // Reader func DecryptCopyRequestR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) { var ( key []byte err error ) if crypto.SSECopy.IsRequested(h) { key, err = ParseSSECopyCustomerRequest(h, metadata) if err != nil { return nil, err } } return newDecryptReader(client, key, bucket, object, seqNumber, metadata) } func newDecryptReader(client io.Reader, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) { objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata) if err != nil { return nil, err } return newDecryptReaderWithObjectKey(client, objectEncryptionKey, seqNumber) } func newDecryptReaderWithObjectKey(client io.Reader, objectEncryptionKey []byte, seqNumber uint32) (io.Reader, error) { reader, err := sio.DecryptReader(client, sio.Config{ Key: objectEncryptionKey, SequenceNumber: seqNumber, CipherSuites: fips.DARECiphers(), }) if err != nil { return nil, crypto.ErrInvalidCustomerKey } return reader, nil } // DecryptBlocksRequestR - same as DecryptBlocksRequest but with a // reader func DecryptBlocksRequestR(inputReader io.Reader, h http.Header, seqNumber uint32, partStart int, oi ObjectInfo, copySource bool) (io.Reader, error) { bucket, object := oi.Bucket, oi.Name // Single part case if !oi.isMultipart() { var reader io.Reader var err error if copySource { reader, err = DecryptCopyRequestR(inputReader, h, bucket, object, seqNumber, oi.UserDefined) } else { reader, err = DecryptRequestWithSequenceNumberR(inputReader, h, bucket, object, seqNumber, oi.UserDefined) } if err != nil { return nil, err } return reader, nil } partDecRelOffset := int64(seqNumber) * SSEDAREPackageBlockSize partEncRelOffset := int64(seqNumber) * (SSEDAREPackageBlockSize + SSEDAREPackageMetaSize) w := &DecryptBlocksReader{ reader: inputReader, startSeqNum: seqNumber, partDecRelOffset: partDecRelOffset, partEncRelOffset: partEncRelOffset, parts: oi.Parts, partIndex: partStart, header: h, bucket: bucket, object: object, customerKeyHeader: h.Get(xhttp.AmzServerSideEncryptionCustomerKey), copySource: copySource, metadata: cloneMSS(oi.UserDefined), } if w.copySource { w.customerKeyHeader = h.Get(xhttp.AmzServerSideEncryptionCopyCustomerKey) } if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil { return nil, err } return w, nil } // DecryptBlocksReader - decrypts multipart parts, while implementing // a io.Reader compatible interface. type DecryptBlocksReader struct { // Source of the encrypted content that will be decrypted reader io.Reader // Current decrypter for the current encrypted data block decrypter io.Reader // Start sequence number startSeqNum uint32 // Current part index partIndex int // Parts information parts []ObjectPartInfo header http.Header bucket, object string metadata map[string]string partDecRelOffset, partEncRelOffset int64 copySource bool // Customer Key customerKeyHeader string } func (d *DecryptBlocksReader) buildDecrypter(partID int) error { m := cloneMSS(d.metadata) // Initialize the first decrypter; new decrypters will be // initialized in Read() operation as needed. var key []byte var err error if d.copySource { if crypto.SSEC.IsEncrypted(d.metadata) { d.header.Set(xhttp.AmzServerSideEncryptionCopyCustomerKey, d.customerKeyHeader) key, err = ParseSSECopyCustomerRequest(d.header, d.metadata) } } else { if crypto.SSEC.IsEncrypted(d.metadata) { d.header.Set(xhttp.AmzServerSideEncryptionCustomerKey, d.customerKeyHeader) key, err = ParseSSECustomerHeader(d.header) } } if err != nil { return err } objectEncryptionKey, err := decryptObjectInfo(key, d.bucket, d.object, m) if err != nil { return err } var partIDbin [4]byte binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key mac.Write(partIDbin[:]) partEncryptionKey := mac.Sum(nil) // Limit the reader, so the decryptor doesnt receive bytes // from the next part (different DARE stream) encLenToRead := d.parts[d.partIndex].Size - d.partEncRelOffset decrypter, err := newDecryptReaderWithObjectKey(io.LimitReader(d.reader, encLenToRead), partEncryptionKey, d.startSeqNum) if err != nil { return err } d.decrypter = decrypter return nil } func (d *DecryptBlocksReader) Read(p []byte) (int, error) { var err error var n1 int decPartSize, _ := sio.DecryptedSize(uint64(d.parts[d.partIndex].Size)) unreadPartLen := int64(decPartSize) - d.partDecRelOffset if int64(len(p)) < unreadPartLen { n1, err = d.decrypter.Read(p) if err != nil { return 0, err } d.partDecRelOffset += int64(n1) } else { n1, err = io.ReadFull(d.decrypter, p[:unreadPartLen]) if err != nil { return 0, err } // We should now proceed to next part, reset all // values appropriately. d.partEncRelOffset = 0 d.partDecRelOffset = 0 d.startSeqNum = 0 d.partIndex++ if d.partIndex == len(d.parts) { return n1, io.EOF } err = d.buildDecrypter(d.parts[d.partIndex].Number) if err != nil { return 0, err } n1, err = d.decrypter.Read(p[n1:]) if err != nil { return 0, err } d.partDecRelOffset += int64(n1) } return len(p), nil } // DecryptedSize returns the size of the object after decryption in bytes. // It returns an error if the object is not encrypted or marked as encrypted // but has an invalid size. func (o *ObjectInfo) DecryptedSize() (int64, error) { if _, ok := crypto.IsEncrypted(o.UserDefined); !ok { return 0, errors.New("Cannot compute decrypted size of an unencrypted object") } if !o.isMultipart() { size, err := sio.DecryptedSize(uint64(o.Size)) if err != nil { err = errObjectTampered // assign correct error type } return int64(size), err } var size int64 for _, part := range o.Parts { partSize, err := sio.DecryptedSize(uint64(part.Size)) if err != nil { return 0, errObjectTampered } size += int64(partSize) } return size, nil } // DecryptETag decrypts the ETag that is part of given object // with the given object encryption key. // // However, DecryptETag does not try to decrypt the ETag if // it consists of a 128 bit hex value (32 hex chars) and exactly // one '-' followed by a 32-bit number. // This special case adresses randomly-generated ETags generated // by the MinIO server when running in non-compat mode. These // random ETags are not encrypt. // // Calling DecryptETag with a non-randomly generated ETag will // fail. func DecryptETag(key crypto.ObjectKey, object ObjectInfo) (string, error) { if n := strings.Count(object.ETag, "-"); n > 0 { if n != 1 { return "", errObjectTampered } i := strings.IndexByte(object.ETag, '-') if len(object.ETag[:i]) != 32 { return "", errObjectTampered } if _, err := hex.DecodeString(object.ETag[:32]); err != nil { return "", errObjectTampered } if _, err := strconv.ParseInt(object.ETag[i+1:], 10, 32); err != nil { return "", errObjectTampered } return object.ETag, nil } etag, err := hex.DecodeString(object.ETag) if err != nil { return "", err } etag, err = key.UnsealETag(etag) if err != nil { return "", err } return hex.EncodeToString(etag), nil } // For encrypted objects, the ETag sent by client if available // is stored in encrypted form in the backend. Decrypt the ETag // if ETag was previously encrypted. func getDecryptedETag(headers http.Header, objInfo ObjectInfo, copySource bool) (decryptedETag string) { var ( key [32]byte err error ) // If ETag is contentMD5Sum return it as is. if len(objInfo.ETag) == 32 { return objInfo.ETag } if crypto.IsMultiPart(objInfo.UserDefined) { return objInfo.ETag } if crypto.SSECopy.IsRequested(headers) { key, err = crypto.SSECopy.ParseHTTP(headers) if err != nil { return objInfo.ETag } } // As per AWS S3 Spec, ETag for SSE-C encrypted objects need not be MD5Sum of the data. // Since server side copy with same source and dest just replaces the ETag, we save // encrypted content MD5Sum as ETag for both SSE-C and SSE-S3, we standardize the ETag // encryption across SSE-C and SSE-S3, and only return last 32 bytes for SSE-C if (crypto.SSEC.IsEncrypted(objInfo.UserDefined) || crypto.S3KMS.IsEncrypted(objInfo.UserDefined)) && !copySource { return objInfo.ETag[len(objInfo.ETag)-32:] } objectEncryptionKey, err := decryptObjectInfo(key[:], objInfo.Bucket, objInfo.Name, objInfo.UserDefined) if err != nil { return objInfo.ETag } return tryDecryptETag(objectEncryptionKey, objInfo.ETag, false) } // helper to decrypt Etag given object encryption key and encrypted ETag func tryDecryptETag(key []byte, encryptedETag string, ssec bool) string { // ETag for SSE-C encrypted objects need not be content MD5Sum.While encrypted // md5sum is stored internally, return just the last 32 bytes of hex-encoded and // encrypted md5sum string for SSE-C if ssec { return encryptedETag[len(encryptedETag)-32:] } var objectKey crypto.ObjectKey copy(objectKey[:], key) encBytes, err := hex.DecodeString(encryptedETag) if err != nil { return encryptedETag } etagBytes, err := objectKey.UnsealETag(encBytes) if err != nil { return encryptedETag } return hex.EncodeToString(etagBytes) } // GetDecryptedRange - To decrypt the range (off, length) of the // decrypted object stream, we need to read the range (encOff, // encLength) of the encrypted object stream to decrypt it, and // compute skipLen, the number of bytes to skip in the beginning of // the encrypted range. // // In addition we also compute the object part number for where the // requested range starts, along with the DARE sequence number within // that part. For single part objects, the partStart will be 0. func (o *ObjectInfo) GetDecryptedRange(rs *HTTPRangeSpec) (encOff, encLength, skipLen int64, seqNumber uint32, partStart int, err error) { if _, ok := crypto.IsEncrypted(o.UserDefined); !ok { err = errors.New("Object is not encrypted") return } if rs == nil { // No range, so offsets refer to the whole object. return 0, o.Size, 0, 0, 0, nil } // Assemble slice of (decrypted) part sizes in `sizes` var sizes []int64 var decObjSize int64 // decrypted total object size if o.isMultipart() { sizes = make([]int64, len(o.Parts)) for i, part := range o.Parts { var partSize uint64 partSize, err = sio.DecryptedSize(uint64(part.Size)) if err != nil { err = errObjectTampered return } sizes[i] = int64(partSize) decObjSize += int64(partSize) } } else { var partSize uint64 partSize, err = sio.DecryptedSize(uint64(o.Size)) if err != nil { err = errObjectTampered return } sizes = []int64{int64(partSize)} decObjSize = sizes[0] } var off, length int64 off, length, err = rs.GetOffsetLength(decObjSize) if err != nil { return } // At this point, we have: // // 1. the decrypted part sizes in `sizes` (single element for // single part object) and total decrypted object size `decObjSize` // // 2. the (decrypted) start offset `off` and (decrypted) // length to read `length` // // These are the inputs to the rest of the algorithm below. // Locate the part containing the start of the required range var partEnd int var cumulativeSum, encCumulativeSum int64 for i, size := range sizes { if off < cumulativeSum+size { partStart = i break } cumulativeSum += size encPartSize, _ := sio.EncryptedSize(uint64(size)) encCumulativeSum += int64(encPartSize) } // partStart is always found in the loop above, // because off is validated. sseDAREEncPackageBlockSize := int64(SSEDAREPackageBlockSize + SSEDAREPackageMetaSize) startPkgNum := (off - cumulativeSum) / SSEDAREPackageBlockSize // Now we can calculate the number of bytes to skip skipLen = (off - cumulativeSum) % SSEDAREPackageBlockSize encOff = encCumulativeSum + startPkgNum*sseDAREEncPackageBlockSize // Locate the part containing the end of the required range endOffset := off + length - 1 for i1, size := range sizes[partStart:] { i := partStart + i1 if endOffset < cumulativeSum+size { partEnd = i break } cumulativeSum += size encPartSize, _ := sio.EncryptedSize(uint64(size)) encCumulativeSum += int64(encPartSize) } // partEnd is always found in the loop above, because off and // length are validated. endPkgNum := (endOffset - cumulativeSum) / SSEDAREPackageBlockSize // Compute endEncOffset with one additional DARE package (so // we read the package containing the last desired byte). endEncOffset := encCumulativeSum + (endPkgNum+1)*sseDAREEncPackageBlockSize // Check if the DARE package containing the end offset is a // full sized package (as the last package in the part may be // smaller) lastPartSize, _ := sio.EncryptedSize(uint64(sizes[partEnd])) if endEncOffset > encCumulativeSum+int64(lastPartSize) { endEncOffset = encCumulativeSum + int64(lastPartSize) } encLength = endEncOffset - encOff // Set the sequence number as the starting package number of // the requested block seqNumber = uint32(startPkgNum) return encOff, encLength, skipLen, seqNumber, partStart, nil } // EncryptedSize returns the size of the object after encryption. // An encrypted object is always larger than a plain object // except for zero size objects. func (o *ObjectInfo) EncryptedSize() int64 { size, err := sio.EncryptedSize(uint64(o.Size)) if err != nil { // This cannot happen since AWS S3 allows parts to be 5GB at most // sio max. size is 256 TB reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10)) ctx := logger.SetReqInfo(GlobalContext, reqInfo) logger.CriticalIf(ctx, err) } return int64(size) } // DecryptObjectInfo tries to decrypt the provided object if it is encrypted. // It fails if the object is encrypted and the HTTP headers don't contain // SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior) // DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the // decryption succeeded. // // DecryptObjectInfo also returns whether the object is encrypted or not. func DecryptObjectInfo(info *ObjectInfo, r *http.Request) (encrypted bool, err error) { // Directories are never encrypted. if info.IsDir { return false, nil } if r == nil { return false, errInvalidArgument } headers := r.Header // disallow X-Amz-Server-Side-Encryption header on HEAD and GET switch r.Method { case http.MethodGet, http.MethodHead: if crypto.S3.IsRequested(headers) || crypto.S3KMS.IsRequested(headers) { return false, errInvalidEncryptionParameters } } _, encrypted = crypto.IsEncrypted(info.UserDefined) if !encrypted && crypto.SSEC.IsRequested(headers) && r.Header.Get(xhttp.AmzCopySource) == "" { return false, errInvalidEncryptionParameters } if encrypted { if crypto.SSEC.IsEncrypted(info.UserDefined) { if !(crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers)) { return encrypted, errEncryptedObject } } if crypto.S3.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" { if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) { return encrypted, errEncryptedObject } } if crypto.S3KMS.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" { if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) { return encrypted, errEncryptedObject } } if _, err = info.DecryptedSize(); err != nil { return encrypted, err } if _, ok := crypto.IsEncrypted(info.UserDefined); ok && !crypto.IsMultiPart(info.UserDefined) { info.ETag = getDecryptedETag(headers, *info, false) } } return encrypted, nil } // The customer key in the header is used by the gateway for encryption in the case of // s3 gateway double encryption. A new client key is derived from the customer provided // key to be sent to the s3 backend for encryption at the backend. func deriveClientKey(clientKey [32]byte, bucket, object string) [32]byte { var key [32]byte mac := hmac.New(sha256.New, clientKey[:]) mac.Write([]byte(crypto.SSEC.String())) mac.Write([]byte(path.Join(bucket, object))) mac.Sum(key[:0]) return key }